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Effects of Visual Experience on the Representation
of Objects in the Prefrontal Cortex

improvements in object recognition has remained elu-
sive, however. These effects have not been shown to
increase the amount of object information conveyed by
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neural activity and they have not been directly tied toDepartment of Brain and Cognitive Sciences
increased ability of monkeys to recognize objects.Massachusetts Institute of Technology

To provide evidence for such a link, we examined theCambridge, Massachusetts 02139
lateral PF cortex, a brain region that receives inputs
from the IT cortex (Barbas and Mesulam, 1985; Pandya
and Yeterian, 1990; Petrides and Pandya, 1999) andSummary
plays a central role in behaviors that involve discriminat-
ing, remembering, and making decisions about visual

The perception and recognition of objects are im- stimuli (Fuster, 1997). Damage to the PF cortex disrupts
proved by experience. Here, we show that monkeys’ a variety of visually guided behaviors (Petrides, 1994),
ability to recognize degraded objects was improved and, like IT neurons, many lateral PF neurons are selec-
by several days of practice with these objects. This tively activated by complex objects (Miller et al., 1996).
improvement was reflected in the activity of neurons Frontal cortex has been particularly implicated in the
in the prefrontal (PF) cortex, a brain region critical processing of novel information and is critical for learn-
for a wide range of visual behaviors. Familiar objects ing a wide variety of behaviors (Chen and Wise, 1995;
activated fewer neurons than did novel objects, but Knight et al., 1995; Asaad et al., 1998; Parker et al.,
these neurons were more narrowly tuned, and the ob- 1998). Thus, it is a good candidate for studying the

effects of experience.ject representation was more resistant to the effects
We used a modified version of a delayed matching-of degradation, after experience. These results dem-

to-sample (DMS) task that required monkeys to discrimi-onstrate a neural correlate of visual learning in the PF
nate and remember each of a set of five objects (seecortex of adult monkeys.
Experimental Procedures). Monkeys were briefly shown
a sample object, then after a short delay, a test object.
If the test object matched the sample, monkeys wereIntroduction
required to release a bar to receive a juice reward. Mon-
keys can typically perform this task very well, makingLearned behaviors typically benefit from practice. Motor
correct judgments on 90% or more of the trials, leavingskills become more accurate, efficient, and automatic
little room for improvement with practice. We made theand can be executed more quickly. Visual processing
task more difficult by parametrically degrading the sam-likewise benefits from experience. Familiarity with a set
ple objects by interpolation with noise patterns (Figureor class of objects can lead to an increase in our accu-
1). Monkeys had to recognize which object was presentracy in discriminating and recognizing them, particularly
during the sample period and release a lever if thatin situations when the objects are occluded or otherwise
object appeared during the test period. Similar paramet-difficult to discriminate. However, while much is under-
ric behavioral paradigms have been previously em-stood about how sensory visual attributes are repre-
ployed in monkeys for the study of coherent motionsented in neural activity, relatively little is known about
(Newsome et al., 1989; Kim and Shadlen, 1999), tactilehow experience improves their processing.
(Romo et al., 1999), and object (Amit et al., 1997; B.One robust effect of visual experience is the waning
Jagadeesh and R. Desimone, 1997, Soc. Neurosci., ab-of neuronal responsiveness as an initially novel stimulus
stract) stimuli. To assess the effects of experience, webecomes familiar. This seems to be a widespread phe-
compared behavior and neural activity during the perfor-nomenon, evident in several cortical visual areas, includ-
mance of the task with novel and familiar objects (seeing the inferior temporal (IT) cortex (a brain region impor-
Experimental Procedures).tant for object recognition) (Gross, 1973; Tanaka, 1996;

Logothetis, 1998; Miyashita and Hayashi, 2000) and the
Resultsprefrontal (PF) cortex (which plays a central role in visual

cognition) (Goldman-Rakic, 1995; Miller, 1999). It has
Experience Improved Psychophysical Performancebeen suggested that this reflects a process that win-
We found that experience resulted in improved psycho-nows the neural ensemble activated by a new stimulus,
physical performance. The monkeys’ performance var-leaving behind fewer neurons that optimally represent
ied systematically as a function of stimulus level for boththe now familiar object (Li et al., 1993; Desimone, 1996;
novel and familiar objects (Figure 2). When nondegradedWiggs and Martin, 1998). Support for this comes from
objects were used as samples (100% stimulus level),observations that some IT neurons show an apparent
monkeys performed near ceiling with both familiar andincrease in responsiveness to familiar stimuli, at least
novel objects (95% and 92% correct, respectively, p 5with weeks or months of experience (Kobatake et al.,
0.14, t test). Performance was at chance level at the 0%1998). Establishing a link between these changes and
stimulus level because there was no object information
present in the sample, and the monkeys were guessing.* To whom correspondence should be addressed (e-mail: gregor.
At intermediate stimulus levels, however, monkeys per-rainer@tuebingen.mpg.de).
formed better with familiar objects than with novel ob-† Present address: Max-Planck Institute for Biological Cybernetics,

Spemannstrasse 38, D-72076 Tübingen, Germany. jects (e.g., at the 65% stimulus level, performance was
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Figure 1. Task and Stimuli

(a) Natural objects and their Fourier power spectra before and after equalization for spatial frequency. Also shown are four examples of
random noise patterns matched for spatial frequency and luminance.
(b) Linear (pixel-by-pixel) interpolation that was used to generate intermediate images between the natural images and the noise patterns.
(c) Example of a behavioral trial. A sample object (one of the five objects at one of seven stimulus levels) was presented for 650 ms. After a
1000 ms delay, either a match or a nonmatch object (one of the five objects, always at 100% stimulus) was presented for 650 ms.

82% correct with familiar and 56% correct with novel was novel or familiar. To do this, we examined neural
responses to nondegraded (100% stimulus level) ob-objects, p ,, 0.0001, t test). We attribute this improve-

ment in performance at intermediate stimulus levels to jects. The most obvious effect was that familiar objects
elicited less overall activity than did novel objects. Thisvisual experience with the objects.
is shown in Figure 3b, which illustrates the average activ-
ity of all neurons to all novel objects and the correspond-Neural Activity: Effects of Familiarity
ing average activity to all familiar objects. During theWe recorded a total of 324 neurons from the cortices
sample interval and first part of the memory delay, novelof two monkeys (164 neurons were recorded with novel
objects elicited significantly more activity than did famil-objects, and 160 neurons with familiar objects; see Fig-
iar objects (p 5 0.002, t test). No such difference wasure 3a). We first asked whether there were any general

differences in activity depending on whether an object apparent in the last part of the delay (p . 0.1, t test),
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Figure 2. Behavioral Performance

Psychometric functions pooled across two monkeys (familiar ob-
jects: 14 sessions, novel objects: 11 sessions) with the correspond-
ing standard deviations.

which has been associated with “prospective” coding of
a forthcoming stimulus or action (Quintana and Fuster,
1992; Rainer et al., 1999). Average activity during the
late delay was, however, significantly above baseline
for both familiar and novel objects (p , 0.01, t tests).

We next assessed how many neurons showed activity
that was dependent on the identity of the sample object. Figure 3. Recording Sites and Average Activity
A one-way ANOVA was applied to the activity elicited (a) Electrode penetration sites of object-selective neurons (t tests
by nondegraded objects (100% stimulus level; see Ex- at 100% stimulus level, p , 0.05) recorded in the familiar object
perimental Procedures), averaged across the sample experiment (n 5 42, diamonds) and the novel object experiment
and delay intervals. Given the greater overall level of (n 5 90, squares). The small black dots indicate penetration sites

where one or more non object-selective neurons were successfullyactivity elicited by novel objects, it was not surprising
isolated. The inset shows the general location of the recording sitesto find that a significantly greater proportion of neurons
on the surface of the brain. Abbreviations: P.S., principal sulcus;showed selectivity for novel objects (90 of 160, or 56%)
A.S., arcuate sulcus.than for familiar objects (42 of 164, or 26%, p ,, 0.0001,
(b) Average activity plots for the novel and familiar object experi-x2 test). This was also true late in the delay (novel objects:
ments. Each curve represents the neural activity to nondegraded

78 of 160, or 49%, familiar objects: 37 of 160, or 23%, objects (100% stimulus), averaged across all objects and all neurons
p ,, 0.0001, x2 test). It has been hypothesized that as recorded in each experiment (novel objects: n 5 160, familiar ob-
a stimulus becomes familiar, neurons coding features jects: n 5 164).
not essential for recognizing it reduce their responses,
leaving behind a smaller number of more selective neu-
rons that optimally represent the familiar stimulus. To the 100% stimulus level, this neuron showed greater
test whether this was the case for the PF object repre- activity in response to a preferred object than to a non-
sentation, we computed the depth of selectivity (S) for preferred object. Differences in activity between the ob-
neurons that showed significant effects on the ANOVA. jects were less evident for degraded stimuli, however.
The depth of selectivity provides a measure of how nar- To quantify the amount of object information conveyed
rowly tuned a neuron is to a given stimulus set (see by the activity, we used standard receiver operating–
Experimental Procedures). We found that neural activ- characteristic (ROC) methods (see Experimental Proce-
ity to familiar objects was modestly, but significantly, dures). Activity was evaluated across time using two
more narrowly tuned for familiar than for novel objects methods, a “sliding” and a “cumulative” method. The
(Sfamiliar 5 0.30, Snovel 5 0.24, p 5 0.046, t test). Thus, former provides a measure of the “moment-to-moment”
familiarity of a set of objects resulted in (1) a reduction account of object information, whereas the latter pro-
in average PF activity and (2) a decrease in the number vides a measure of the total amount of information con-
of neurons involved in representing the objects but (3) veyed up to a given point in a trial. The data for the
narrower tuning to these familiar objects. example neuron are shown in Figures 4e and 4f. At

the 100% stimulus level, the object selectivity values
reached around 0.95, indicating that this neuron couldNeural Activity: Effects of Degradation

Similar to the behavioral results, familiarity had strong distinguish between the two objects on 95% of trials.
However, the object selectivity fell off rapidly towardeffects on neural activity when the objects were de-

graded. For example, a single neuron’s activity in re- lower stimulus levels. This indicates that the ability of
this neuron to convey object information dropped offsponse to novel objects is shown in Figures 4a–4d. At
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Figure 4. Response of Single Neuron during the Novel Object Experiment

The panels in the top row show the peristimulus time histogram (PSTH) as a function of stimulus level for this neuron’s preferred (a) and
nonpreferred (c) objects. The sample presentation (0–650 ms) and delay periods (650–1650 ms) are shown. The corresponding rasters are
shown below each histogram in (b) and (d). (e) and (f) provide a measure of the object selectivity for this neuron by directly comparing the
activity to the preferred and nonpreferred objects at each stimulus level across time (see Experimental Procedures). Values near 0.5 indicate
similar neural activity to the two objects, and values near 1 indicate very different neural activity and thus strong object selectivity. (e) was
constructed using the cumulative, and (f) using the sliding bin, method.

sharply as the object was degraded. Below a stimulus were highly selective when objects were presented at
the 100% stimulus level. However, note that for novellevel of 85%, its object selectivity values were near

chance level (0.50), indicating that it was communicating objects there was a steep drop in selectivity values for
stimulus levels below 100%, while for familiar objectsno reliable object information.

A neuron that showed selectivity for familiar objects the values formed a broad plateau. This means that
selectivity collapsed when novel objects were degradedis shown in Figure 5. Activity differences between a

preferred and a nonpreferred object were evident not but remained high when familiar objects were degraded.
To quantify this effect across the entire population ofonly at the 100% stimulus level but also when the objects

were degraded (Figures 5a–5d). At the 100% stimulus neurons, we compared each neuron’s optimal perfor-
mance at discriminating 100% objects to its optimallevel, this neuron’s object selectivity values were high

(Figures 5e and 5f), but unlike the neuron shown in Figure performance at discriminating 65% objects (see Experi-
mental Procedures). The 65% level was chosen because4, they remained high at lower stimulus levels. This indi-

cates that for this neuron, object selectivity was robust familiarity was most beneficial to the monkeys’ behavior
at that level (Figure 2). For both novel objects (Figureswith respect to degradation. Even at stimulus levels of

65%–55%, the values were at 0.75 or above. Figure 6 7a and 7c) and familiar objects (Figures 7b and 7d), most
of the data points fall below the diagonal, indicating thatshows object selectivity values for four neurons studied

with novel objects (left column) and four neurons studied PF neurons conveyed more information about nonde-
graded objects (100%) than about degraded objectswith familiar objects (right column). All eight neurons
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Figure 5. Response of Single Neuron during the Familiar Object Experiment

The panels in the top row show the peristimulus time histogram (PSTH) as a function of stimulus level for this neuron’s preferred (a) and
nonpreferred (c) objects, as well as the corresponding rasters (b and d) and the object selectivity computed using cumulative (e) and sliding
(f) methods. Conventions are identical to Figure 4.

(65%). For novel objects, many neurons were highly depending on familiarity were highly significantly differ-
ent (p , 0.0001, x2 test), and this was also true if onlyselective (exceeded an arbitrary object selectivity value

of 0.85) at the 100% stimulus level (sliding: 63 of 160, the subset of neurons that were recorded at identical
penetration sites and at similar depths was consideredor 39%, cumulative: 67 of 160, or 42%). At the 65%

stimulus level, however, only a small fraction of them (see Experimental Procedures). The fact that we found
very few selective neurons in the novel object experi-maintained their selectivity, i.e., exceeded a corre-

sponding criterion value of 0.75 (sliding: 9 of 63, or 14%, ment at 65% stimulus was not merely a consequence
of a general lack of selectivity of the neurons studiedcumulative: 4 of 67, or 6%; Figures 7a and 7c). We used

a criterion of 0.75 (rather than 0.85) because behavioral with novel objects. Indeed, at the 100% stimulus level,
more neurons were highly selective for novel than forperformance was below ceiling at the 65% stimulus level

(Figure 2), and we expected this to be reflected in lower familiar objects; this selectivity was just not robust with
respect to degradation.neural performance. In contrast to the selectivity for

novel objects, fewer neurons were highly selective for The above analysis focuses on neurons that were
highly selective at 100% stimulus. The same pattern offamiliar objects, but these were better able to discrimi-

nate the degraded objects. Of the neurons that were results was apparent when we considered the entire
population of neurons, i.e., regardless of their selectivityhighly selective to familiar 100% objects (sliding: 40 of

164, or 24%, cumulative: 39 of 164, or 24%), the majority at 100% stimulus. At the 65% stimulus level, fewer neu-
rons had selectivity values of at least 0.75 for novelretained their selectivity when objects were degraded

to the 65% stimulus level (sliding: 31 of 40, or 78%, objects (sliding: 5 of 160, or 3%, cumulative: 7 of 160,
or 4%) than for familiar objects (sliding: 30 of 164, orcumulative: 25 of 39, or 64%). The proportions of

neurons exhibiting selectivity for degraded objects 18%, cumulative: 22 of 164, or 13%, p , 0.001, x2-test).
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Figure 6. Object Selectivity Plots for Single Neurons Recorded in the Familiar and Novel Object Experiments

The object selectivity for four example neurons recorded in the familiar object experiment (a) and the novel object experiment (b) is shown.
The top row corresponds to the examples from Figures 4 and 5. The symbols allow the identification of these example neurons in the population
scatterplot shown in Figure 7. Object selectivity was robust to degradation for familiar but not for novel objects.

Familiarity resulted in relatively little improvement in illustrated in Figure 8, which shows that the average
improvement in the object selectivity values of the highlyneural performance at higher stimulus levels (100% and

85%), presumably because, like the monkeys’ behavior, selective neurons was correlated with the behavioral
improvement at each stimulus level (correlation coeffi-performance was already high, and there was little room

for further improvement. Also, at very low stimulus levels cient: R 5 0.93, R 5 0.95 for neurons recorded at “com-
mon” locations; see Experimental Procedures). The av-(45% and 0%), object discrimination was very difficult

(or impossible), and there was little change in either erage ROC values for familiar objects were significantly
greater than those for novel objects at the three interme-neural or behavioral performance with familiarity. The

same was true for neurons; the largest improvements diate stimulus levels (55%, 65%, and 75% stimulus, p ,
0.001, t test). Monkeys also showed a significant im-in neural performance with familiarity were evident at

the same stimulus levels for which there was also the provement in behavior at these levels (p , 0.001, t test;
Figure 2).largest improvement in behavioral performance. This is
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Figure 7. Distribution of Object Selectivity
across the Population

These four panels compare the object selec-
tivity at 100% stimulus to 65% stimulus for
novel and familiar objects. (a) and (b) were
generated using the cumulative, (c) and (d)
using the sliding window, technique. Each
data point corresponds to a single neuron;
the symbols show the locations of the exam-
ple neurons from Figure 6. For each neuron,
the preferred and nonpreferred objects were
determined at 100% stimulus. Object selec-
tivity values correspond to the maximum ob-
ject selectivity observed at any time point.
Highly selective neurons (at 100% stimulus)
are shown in bold (familiar objects: n 5 39,
novel objects: n 5 67) and lie to the right of
a vertical line drawn at 0.85. Data points near
the diagonal indicate similar object selectivity
at 100% and 65% stimulus, whereas data
points near the x axis indicate that object
selectivity was not robust to degradation. To
the right and below the scatterplots, histo-
grams of the object selectivity for the highly
selective neurons are shown.

Discussion with high fidelity. The most object-selective neurons re-
corded in the present study performed at levels compa-
rable to the psychophysical performance of the mon-We report a neural correlate of visual learning in the PF
keys. This differs somewhat from results reported forcortex. Experience improved monkeys’ ability to dis-
extrastriate area MT (middle temporal) during directioncriminate a set of objects that were degraded with noise

patterns. It also improved the ability of PF neurons to discrimination, in which the average neuron performed
communicate information about object identity. Familiar similarly to the monkey (Newsome et al., 1989; Britten
objects activated a smaller population of PF neurons et al., 1992). This is not surprising since for MT neurons,
than did novel objects, but neural activity was more the stimulus was adjusted to be optimal for the neuron
narrowly tuned to familiar objects, and their representa- under study (in terms of receptive field location and
tion was more robust with respect to stimulus degra- preferred direction), whereas we did not and could not
dation. do this in the present study because learning was spe-

Single PF neurons communicated object information cific to the studied objects.
Effects of experience on neural activity have been

extensively studied in the somatosensory (Buonomano
and Merzenich, 1998) and auditory (Weinberger, 1995)
systems. In vision, effects of experience have been re-
ported in the MT (Zohary et al., 1994), as well as in the
IT, cortex, where familiarity with objects can lead to both
decreases and increases in activity at short (Rolls et al.,
1989; Li et al., 1993), as well as long, timescales (Fahy
et al., 1993; Kobatake et al., 1998). These and other
studies have suggested that IT cortex is modifiable by
experience (Sakai and Miyashita, 1991; Logothetis et
al., 1995). However, changes in activity in the IT cortex
have not been shown to improve processing capacity,
nor have they been directly linked to improved behav-
ioral performance. Indeed, one study has reported aFigure 8. Increases in Psychophysical and Neural Performance
lack of an effect of training on IT neurons (Vogels andThe relative increases between the novel and the familiar experi-
Orban, 1994). We report here that neurons in the lateralments are shown. The bar graph shows changes in behavioral per-
PF cortex can indeed improve their ability to communi-formance (left axis), and the line graph shows the changes in object

selectivity (right axis), as a function of degradation. cate object information with experience and that this
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improvement is correlated with improved behavioral learning in the adult brain that enables it to optimize
performance. interactions with the environment.

It is possible that the effects reported in this study
Experimental Proceduresare at least in part due to plasticity within the PF cortex.

Indeed, experience has been correlated with the differ-
Recording Techniqueential activation of the human frontal lobe (Ranganath
Two adult rhesus monkeys, macaca mulatta (monkey A: female, 8and Paller, 1999). Training on visuomotor tasks has been
kg, monkey B: male, 11 kg), participated in the experiments. Eyeshown to modulate neural activity in the supplementary
coil, head restraint, and recording chamber were implanted undereye field (Chen and Wise, 1995) and the lateral PF cortex aseptic conditions while the animals were anesthetized with isoflu-

(Asaad et al., 1998), as well as to induce color selectivity rane. The animals received postoperative antibiotics and analgesics
in neurons in the frontal eye field (FEF) (Bichot et al., and were always handled in accordance with National Institutes of
1996). Similar to these results in the FEF, activity differ- Health guidelines and the recommendations of the Massachusetts
ences as a function of familiarity were apparent early Institute of Technology Animal Care and Use Committee. During

recording sessions, monkeys were seated in primate chairs withinafter the onset of the visual response in our study. This
sound-attenuating enclosures (Crist Instruments, Damascus, MD).suggests that the effect of familiarity was a result of
Their heads were restrained, and a juice spout was placed at theirexperience-dependent plasticity rather than attentional
mouths for automated delivery of reward (apple juice). We employedmodulations since attention does not affect the initial,
a grid system (Crist Instruments, Damascus, MD) with custom madephasic visual response (Rainer et al., 1998; Schall and
modifications that enabled us to use eight single tungsten elec-Thompson, 1999). A given object-selective PF neuron trodes (catalog number UEWLGDSMNN1E, 3 mm tip diameter, FHC,

may receive inputs from many feature-sensitive neurons Bowdoin, ME) simultaneously. Penetrations were made perpendicu-
located in extrastriate and temporal cortex. We suggest lar to the surface of the skull, and the minimum separation between
that through experience, selective strengthening of con- sites was 1 mm. Recording sites were localized using magnetic
nections occurs between PF neurons and visual system resonance imaging and consisted of the lateral PF cortex around

and ventral to the principal sulcus. Neural waveforms were storedneurons that best discriminate a given set of objects.
on disk and sorted into clusters offline (DataWave Instruments,The end result may then be a small population of highly
Longmont, CO). We did not prescreen neurons for task-related re-selective neurons that robustly represent the familiar
sponses. Instead, we advanced each electrode until the activity ofobjects.
one or more neurons was well isolated and then began data collec-The capacity of humans to improve their psychophysi-
tion. This procedure was used to ensure an unbiased estimate ofcal performance has been studied using a variety of PF activity. Monkeys completed an average of 865 trials during each

tasks (Goldstone, 1998; Wallis and Bulthoff, 1999), in- of the 25 recording sessions, resulting in about 25 repetitions for
cluding discrimination of orientation (Karni and Sagi, each object at each of seven stimulus levels (0%–100%; see Figure
1993; Fahle et al., 1995; Dosher and Lu, 1999; Sigman 1). Each session lasted z3 hr.
and Gilbert, 2000), brightness (Ito et al., 1998; Ito and
Gilbert, 1999), motion (Ball and Sekuler, 1982, 1987), Recording Locations

Due to the number of conditions required and limitations on theand complex objects (Gold et al., 1999; Furmanski and
number of trials a monkey can work on a given day, it was in generalEngel, 2000). It has been suggested that synaptic plas-
not possible to complete both the familiar and the novel objectticity at very early stages of visual processing—possibly
experiment during a single recording session. The two experimentseven in primary visual cortex—might be responsible for
are thus based on different neuronal samples. This was necessarysome of these effects (Gilbert, 1996; Sagi and Tanne,
because the familiarity effect took several days to appear, and thus1994) because learning is often specific to the trained
comparisons could not be made for the same neurons and objects.

location and stimuli. Recent evidence suggests that vi- However, care was taken to record neurons in the same locations
sual learning may also retune intermediate areas by (Figure 3a) and depths in both experiments. Further, the use of
modifying connections from low-level sensory to high- multiple electrodes allowed rapid acquisition of data, and thus ex-
level decision structures (Dosher and Lu, 1999). Our periments with novel and familiar objects were completed within 2

weeks. To ensure that our results are not a consequence of samplingresults are compatible with both of these views; we
different portions of PF cortex in the novel and familiar object experi-do not know where in the visual processing hierarchy
ments, we identified ten “common” locations, where we successfullylearning effects first appear. This question will have to be
isolated selective neurons in both experiments (see Figure 3a). Weaddressed by further experiments. Similar to the present
found that most (33 of 42, 79%) of the neurons studied with familiarresults in monkeys, human performance on recognition
objects and 36 of 90 (40%) of neurons studied with novel objectstasks in the presence of noise can increase dramatically
were in fact recorded at such “common” locations. There was no

with practice as a result of enhanced signal strength significant difference in recording depths at each of the ten re-
(Gold et al., 1999). The increase in robustness with re- cording sites (p . 0.1, t tests). We repeated the major analyses for
spect to degradation that we observed at intermediate this subset of neurons and found that results were virtually identical
stimulus levels is consistent with this and suggests a to those obtained when the entire population was considered.
possible neural substrate for this kind of learning in
humans as well. Behavioral Task

The behavioral paradigm was a modified version of DMS. Each trialIn sum, our results show that visual experience with
began when the monkey grabbed a metal lever and initiated fixationobjects has strong effects on both behavioral perfor-
on a small spot of light at the center of the screen. After 1000 msmance and neural activity in the PF cortex. It has been
of fixation, a sample object was presented for 650 ms. This samplehypothesized that experience winnows the neural en-
object could be any of the five objects at any of the seven stimulussemble representing a given object, leaving behind a
levels (0%, 45%, 55%, 65%, 75%, 85%, or 100%). After a 1000 mssmaller group of neurons that optimally represent the delay, a test object was presented for 650 ms. The test object was

learned object (Li et al., 1993). The present study sup- always at 100% stimulus and could be any one of the five objects.
ports this view and further describes an experience- If on a given trial, the sample object was identical to or was a
dependent increase in the robustness of the representa- degraded version of the test object, monkeys had to release a lever
tion for degraded inputs. This makes processing less to obtain a juice reward. In the case of the 0% stimulus level, mon-

keys were randomly rewarded for releasing the lever on half of thesusceptible to noise and may reflect a general form of
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trials because the sample image contained none of the objects, and one-way ANOVA (evaluated at p , 0.05) using object identity as a
factor for the entire sample period and delay period (from 100 tomonkeys had to simply guess. If the test object did not match the

sample object, monkeys had to hold the lever for the entire 650 ms 1650 ms after sample onset). In addition, we also performed a similar
ANOVA (evaluated at p , 0.05) for the “prospective” period (fromof test object presentation, and a second delay followed that was

always terminated by a correct match requiring a lever release. 1250 to 1650 ms after sample onset). To quantify object selectivity,
we employed ROC analyses (Green and Swets, 1966; Tolhurst etMonkeys did not need to retain object information in memory during

this second delay; it was included only to ensure a behavioral re- al., 1983; Vogels and Orban, 1990). Essentially, a ROC measures
the degree of overlap between two response distributions. Givensponse on every trial and was not included in any of the analyses.

Match and nonmatch trials occurred equally often, and monkeys two distributions of neural activity A and B, we start by plotting
for each possible firing rate the proportion of distribution A thathad no way of predicting whether a particular trial would be a match

or a nonmatch. Prior to the participation in the present study, both exceeded this criterion versus the proportion of distribution B that
exceeded it. Calculation of the area under this ROC curve yields amonkeys had extensive experience with a standard DMS task using

undegraded stimuli over a period of about 2 years. single number for that comparison. This analysis has several advan-
tageous properties. First, it provides an assumption-free estimate
of the degree of overlap between A and B; values near 0.5 indicateStimuli
large overlap between A and B, whereas values near 0 or 1 indicateTo generate a stimulus set for one recording session, we started
small overlap. Second, it can be conveniently interpreted as theby selecting five images of natural objects at 24-bit color depth,
performance of an ideal observer in a two-way forced choice task.adjusted to 50 by 50 pixels in size. First, the mean intensity of each
Third, it is independent of the firing rate of the neuron under studyobject was adjusted for each RGB channel to 100/255. Then we
and can thus be used to compare the activity of neurons with widelycomputed the Fourier power spectrum (FPS) for each object using
different baseline and dynamic firing rates.the fast Fourier transform (FFT) and calculated an average FPS by

In the context of the present experiment, we computed ROC areaaveraging the five individual ones from each of the objects. This
values comparing each of the five objects to every other object (10average FPS had the 1/f a spatial frequency dependence that is
comparisons) at each stimulus level (7 comparisons), resulting in acharacteristic of natural images (Field, 1987; Tadmor and Tolhurst,
total of 70 comparisons. Note that at the 0% stimulus level, we1993; Brady, 1997). The average FPS was used together with the
essentially compared one set of responses to noise patterns tounchanged Fourier phase to generate five new objects using inverse
another set of responses to the identical patterns. We performedFFT. This procedure was applied to each RGB channel indepen-
these calculations using all trials (correct and incorrect) and correctdently. The objects created in this way were thus equalized for
trials only. Results were virtually identical, and data presented hereintensity and Fourier power. Next, random noise patterns were ob-
are based on all trials because at 0% stimulus, half of the trialstained by inverse FFT of random phase distributions (values ranging
are arbitrarily assigned as incorrect, and excluding these from thefrom 2p to 1p), together with the average FPS from the five original
analysis makes comparison across stimulus levels more difficultobjects. This resulted in random noise patterns that were matched
since they would be based on an unequal number of trials.to the objects in terms of luminance and spatial frequency. Linear

Because we were also interested in the time course of the objectpixel-by-pixel interpolation was performed by linear combination of
selectivity, we computed ROC area values at 32 different time points.each of the objects with each of four random noise patterns at seven
We employed both a cumulative and a sliding bin method. For thestimulus levels, determined by pilot psychophysics. Isoluminance of
sliding bin, we moved a bin of fixed size (200 ms) through the trialall frames within 610% was confirmed using a Photometer. Average
by shifting it each time by 50 ms. For the cumulative bin method,luminance of the entire 48 by 48 stimulus was 14 cd/m2. Stimuli were
estimation started with a window of 50 ms duration and began 100displayed on a 17 inch computer monitor after appropriate gamma
ms after sample presentation to adjust for the response latenciescorrection. Images were always presented at the center of gaze.
of PF neurons. Successive time points were obtained by adding theCentral fixation within a 61.258 window was required at all times
data from an additional 50 ms until the entire sample period andduring a trial.
delay period (1650 ms) were considered together to obtain the last
data point. For each neuron, we thus computed 2240 ROC areaNovelty/Familiarity
coefficients. Then, we determined the preferred and nonpreferredDuring the novel object experiment, a new set of objects was pre-
objects by selecting the comparison, which yielded the maximalsented to the animal each day. Thus, each set of objects presented
ROC area at any time point (at 100% stimulus). We used the pre-in each session of the novel object experiment was completely
ferred and nonpreferred objects because we wanted to quantifyunfamiliar to the monkeys. In preparation for the familiar object
how much object information it was communicating. To generateexperiment, we allowed monkeys to perform the task with one set
the surface plots of Figures 4–6, we plotted the ROC area valuesof objects for about five consecutive behavioral sessions. We found
of this comparison—the object selectivity—as a function of timethat there was a continuous improvement in performance over 5
and stimulus level. The values in Figure 7 are based on the maximadays, but after that behavior was stable. Then, the (now familiar)
(in time) of this optimal comparison for 100% and 65% stimulusset of objects was used for several recording sessions. Recording
levels (not necessarily the same time slice). Note that preferredsessions with novel and familiar objects were conducted in an inter-
and nonpreferred objects were those selected as yielding maximummixed fashion, such that a session with familiar objects would often
object selectivity values for each neuron. Thus, overall each neuron

be followed by a session with novel objects and vice versa. The
responded more vigorously to the preferred than to the nonpreferred

behavioral data summarized in Figure 2 were collected during these
objects. However, for some time bins (especially for the sliding bin

recording sessions. To counterbalance for novelty, we used novel
method), object selectivity could fall below the value of 0.5, indicat-

noise patterns for every behavioral and recording session in the
ing that during these intervals there were actually more spikes in

familiar object experiment and the same noise patterns for all ses-
response to the nonpreferred object.

sions during the novel object experiment. Noise patterns had to be
novel every day in the familiar object experiment to prevent monkeys

Depth of Selectivity
from cheating by learning details about particular noise patterns. The object selectivity defined above quantifies firing rate differences
Familiar noise patterns were employed in the novel object experi- between the most and least preferred objects. In addition, we mea-
ment to equate the total amount of novelty between the two experi- sured the depth of selectivity (S), which takes all five objects into
ments. account (Rainer et al., 1998). This analysis was performed at the

100% stimulus level for the entire sample period and delay period,
Data Analysis treated together (from 100 to 1650 ms after sample onset). The
Data were analyzed using custom written MATLAB (MathWorks, depth of selectivity is defined as:
Natick, MA) programs and the SPSS statistical software package.
Background activity was assessed by averaging activity over the 400
ms of fixation prior to presentation of the sample object. Incidence of S 5

n 2 o Ri

Rmax

n 2 1object selectivity at the 100% stimulus level was assessed with a
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where n 5 number of objects, Ri 5 firing rate to ith object, and Goldstone, R.L. (1998). Perceptual learning. Annu. Rev. Psychol. 49,
585–612.Rmax 5 max{Ri}. S can vary from zero to 1, where a value of zero

means identical responses to all objects, and a value of 1 means Green, D.M., and Swets, J.A. (1966). Signal Detection Theory and
activation by one object and silence by all others. Psychophysics (New York: J. Wiley and Sons).
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