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In this issue of Neuron, Stokes et al. (2013) demonstrate that cortical neurons that adapt their properties with
task demands form patterns reflecting the shifting mental states needed to solve the task. Adaptive neurons
may be critical to hallmarks of cognition: behavioral complexity and flexibility.
Traditionally, cortical neurons have been

viewed as specialized for single functions

or a few highly related functions. Different

sets of neurons analyze space, recognize

objects, etc. The thinking is that while a

given neuron may participate in many

behaviors, its activity always ‘‘means’’

one thing like ‘‘leftward motion.’’ And,

indeed, the cortex is organized by sen-

sory and motor functions, has maps of

external space, etc. But strict specializa-

tion may be the exception, not the rule,

more evident in primary sensory and

motor cortex or for exceptionally impor-

tant information like faces (Gross et al.,

1972; Kanwisher et al., 1997). Instead, at

the higher levels of cortical processing,

neural specialization waters down in a

mix of disparate, seemingly unrelated, in-

formation. There is no obvious function

that unites the variety of information

signaled by individual neurons.

Consider recent examples from the

lateral intraparietal area (LIP), a cortical

area widely regarded as specialized for

visuospatial functions. The same neurons

showed independent selectivity for

motion categories and unrelated informa-

tion like shape categories (Fitzgerald

et al., 2011; Rishel et al., 2013). Such

multidimensional or mixed selectivity

may apex in the prefrontal cortex (PFC),

the ‘‘executive’’ cortex, where cognitively

demanding tasks engage large fractions

of neurons that encode different informa-

tion in different tasks or different times in

the same task (e.g., Cromer et al., 2010).

Note that this does not mean that cortical

areas are functionally equivalent. Certain

information is emphasized, more explicit,

or more orderly in some areas than others.

But it is increasingly clear that the cortex

is not a patchwork of high specialization.
Many areas may be special for certain

functions but not specialized for them

because cortical neurons are often a

nexus of disparate information.

This mixed selectivity suggests ‘‘adap-

tive coding’’: neurons with extensive

inputs from a wide range of external (sen-

sory, motor) and internal (values, mem-

ories, etc.) sources (Duncan and Miller,

2002). There is no one message from

such neurons. They can be recruited for

different functions because their message

changeswith the activity of other neurons.

This flexibility seems essential for com-

plex behavior (more below). But thus far,

much of the evidence has been indirect,

based on mixed selectivity of single neu-

rons and core brain areas in humans that

are activated by many different cognitive

tasks. In this issue of Neuron, Stokes

et al. (2013) provide some of the first

direct evidence for adaptive coding in

action.

Monkeys were taught that six pictures

formed three pairs. Then, they saw two

randomly chosen pictures in sequence

separated by a short delay. They were

rewarded if they successfully indicated

whether the two pictures were paired or

not. Note the evolution and diversity of

mental states: perception and short-term

memory (for the first picture), recall (of its

pair), and decisions (paired or not). Rather

than use the typical approach of focusing

on the average firing rate of single neu-

rons over long intervals (seconds), Stokes

et al. (2013) examined patterns of PFC

neural activity recorded from multiple

electrodes over small steps in time

(50 ms). This revealed shifting patterns

of PFC activity that followed a trajectory

through multidimensional space from

signaling sensory events to internal fac-
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tors like rules and decisions. Many PFC

neurons participated in multiple states.

Thus, mixed selectivity does not result in

cortical porridge but rather an organized

progression of mental states, provided

you have multiple electrodes and can

simultaneously take multiple neurons

into account.

Why such complexity? Would it not be

simpler if every neuron had its own job?

You could build a brain like that, but it

would not work very well. Consider a

simple neural circuit designed to solve

the Stokes task (Figure 1). The readout

neuron is active when the weighted sum

of the inputs is above a threshold. As in

the exclusive-or (XOR) problem, there is

no solution if inputs include only special-

ized neurons that encode the pictures

separately. Even in the simplest case

of two pictures (A, B) and their pairs

(A0, B0), the readout neuron cannot

respond to the two related pairs (A, A0

and B, B0) and not to the other two (A, B0

and B, A0). The solution is to add neurons

that respond to nonlinear mixtures of

relevant variables. The task is solved by

simply adding a third neuron that adapts

its selectivity according to the cue stim-

ulus (it discriminates A0 versus B0 only

when the cue was A). In a forthcoming

paper, we demonstrate that mixed selec-

tivity in PFC neurons has critical com-

putational advantages (Rigotti et al.,

2013). It greatly increases the complexity

and number of tasks that can be learned.

Rather than ‘‘confuse’’ downstream

readout neurons, increasing the number

of mixed selectivity neurons exponentially

increases the number of possible input-

output mappings that readout neurons

can implement. Networks without mixed

selectivity have a limited capacity to learn
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Figure 1. Example of a Neural Circuit that Can Solve a Task Only with Mixed Selectivity Neurons
(A) Cue and related target pictures. A is paired with A0, and B with B0.
(B) Left: two highly specialized input neurons converging on a readout neuron. One responds to A and not B and the other to A0 and not B0. Right: the x axis rep-
resents the activity level of one input neuron (A versus B) and the y axis the other (A0 versus B0). The four triangles are four possible input patterns for the cue and
choices. Red triangles cannot be separated from yellow triangles with a line (the readout neuron cannot respond to A, A0 and B, B0 but not to A, B0 and B, A0 ).
(C) Same as (B) but a mixed selectivity neuron responding to the combination A and A0 is included. The input space is now three-dimensional, and red triangles
can be separated from the yellow ones by a transparent plane.
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a few simple tasks. Plus, mixed selectivity

speeds and eases learning because only

readout neurons need to be trained and,

with high-dimensional neural representa-

tions, learning algorithms converge more

rapidly (Rigotti et al., 2010). Given these

advantages, it is no wonder that mixed

selectivity is so widely observed in the

cortex.

But does mixed selectivity not create

problems? Do downstream neurons not

sometimes receive signals that are irrele-

vant or counterproductive? One solution

is the oscillatory brain rhythms. They

could allow neurons to communicate

different messages to different targets

depending on what they are synchronized

with (and how, e.g., phase and fre-

quency). For example, rat hippocampal

CA1 neurons preferentially synchronize

to the entorhinal or CA3 neurons at

different gamma frequencies and theta

phases (Colgin et al., 2009). Different

frequency synchronization between hu-

man cortical areas supports recollection

of spatial versus temporal information
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(Watrous et al., 2013). Different phases

of cortical oscillations preferentially signal

different pictures simultaneously held in

short-term memory (Siegel et al., 2009).

Monkey frontal and parietal cortices syn-

chronize more strongly at lower versus

higher frequency for top-down versus

bottom-up attention, respectively (Busch-

man and Miller, 2007). Entraining the hu-

man frontal cortex at those frequencies

produces the predicted top-down versus

bottom-up effects on behavior (Chanes

et al., 2013). Thus, activity from the

same neurons has different functional

outcomes depending on their rhythmic

dynamics.

For years, experimentalists have

observed that cortical areas central to

cognition have large proportions of

‘‘weird’’ neurons with mixed selectivity

that cannot be pinned to one particular

message. These neurons may have

seemed difficult to interpret, but there is

mounting evidence that they may underlie

hallmarks of cognition: the great capacity

to absorb and flexibly implement a wide
Inc.
range of cognitive skills and tasks. Stokes

et al. (2013) provides a new intriguing

glimpse into their neural infrastructure

and dynamics.
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