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Abstract
There is a severe limitation in the number of items that can be held in working memory. However, the neurophysiological
limits remain unknown. We asked whether the capacity limit might be explained by differences in neuronal coupling. We
developed a theoretical model based on Predictive Coding and used it to analyze Cross Spectral Density data from the
prefrontal cortex (PFC), frontal eye fields (FEF), and lateral intraparietal area (LIP). Monkeys performed a change detection
task. The number of objects that had to be remembered (memory load) was varied (1–3 objects in the same visual hemifield).
Changes in memory load changed the connectivity in the PFC–FEF–LIP network. Feedback (top-down) coupling broke down
when the number of objects exceeded cognitive capacity. Thus, impaired behavioral performance coincided with a break-
down of Prediction signals. This provides new insights into the neuronal underpinnings of cognitive capacity and how
coupling in a distributed working memory network is affected by memory load.
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Introduction
The number of objects that can be held in working memory (cog-
nitive capacity) is limited (Vogel and Machizawa 2004). Cognitive
capacity is directly related to cognitive ability (Conway et al. 2003;
Alloway and Alloway 2010; Fukuda et al. 2010; Unsworth et al.
2014) and is lowered in neurological diseases and psychiatric dis-
orders (Luck and Vogel 2013). Therefore, studying how working
memory load affects neural processing can inform our under-
standing of why there is a capacity limit and how cognitive func-
tion breaks down in various neurological and psychiatric diseases
and disorders.

Studies of working memory load and its limits have focused
on coordinated activity in frontoparietal networks known to
play a major role in working memory (Gray 1994; Klingberg
et al. 2002; Todd and Marois 2005; Palva et al. 2010; Dotson et al.
2014; Awh et al. 2006). These studies predicted capacity limits
using measures of network integration (how different parts of
these networks are connected together) and synchrony (Roux
et al. 2012; Stevens et al. 2012). In light of recent observations

that visual working memory is independent for the 2 visual
hemifields (Buschman et al. 2011; Kornblith et al. 2016) and that
changes in load have different effects on oscillatory dynamics
of different frequencies (Kornblith et al. 2016), we aimed for a
further understanding of working memory load on network
dynamics in the frontoparietal cortex.

To that end, we re-examined LFP data from a change detec-
tion task in which working memory load was varied between 1
and 3 objects in each hemifield (Buschman et al. 2011). We pre-
viously reported (Kornblith et al. 2016) that load affected low
(8–50 Hz) and high (50–100 Hz) power differently depending on
time during the trial. We found a dissociation between the
effects of load on lower- versus higher-frequency power and
their relationship to behavior. Notably, independence between
the visual hemifields was apparent in high, but not low, fre-
quencies. Independence means that increases in stimulus load
in one hemifield have no effect on the animal’s ability to remem-
ber stimuli in the opposite hemifield (Buschman et al. 2011).
Likewise, increasing stimulus load only effects neural activity
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related to stimuli in the same hemifield, not neural activity
related to stimuli in the opposite hemifield (Buschman et al.
2011; Kornblith et al. 2016). Also, load effects on power were
similar below and above the cognitive capacity. This cannot
explain abrupt decrease in behavioral performance above
capacity. Further, earlier power and synchrony analyses did not
describe the directionality of interactions between brain areas.

Here, we aim to provide a mechanistic explanation of load
effects by focusing on changes in the strength and directional-
ity of neuronal coupling. We develop a large-scale cortical net-
work model comprising the prefrontal cortex (PFC), frontal eye
fields (FEF), and the lateral intraparietal area (LIP). This is an
extension of our earlier model (Pinotsis et al. 2014; Bastos and
Litvak et al. 2015) based on Predictive Coding and uses Cross
Spectral Density (CSD) responses to infer changes in neuronal
coupling that underlie the changes in spectral power at differ-
ent frequencies. Our model addresses how load-dependent
dynamics effects directed functional connectivity. It also sug-
gests abrupt changes in neuronal coupling above capacity and
a break-down of Prediction signals. Finally, it shows that func-
tional hierarchies in large cortical networks do not necessarily
change when neuronal coupling changes.

Results
Our change detection task and behavioral results have been
described in detail (Buschman et al. 2011), see also Figure 1.
Two monkeys were presented with a sample array of 2–5 col-
ored squares for 800ms. This was followed by a delay period
(800- to 1000-ms). After that, a test array was presented. This
differed from the sample array in that one of the squares had
changed color (target). Monkeys were trained to make a saccade
to the target. We analyzed LFP data from the memory delay
period. During this delay, there was no sensory stimulation or
motor responses that might affect neuronal dynamics. We
examined the relationship between dynamics and functional
connectivity.

In our earlier work (Buschman et al. 2011; Kornblith et al.
2016), we found separate, independent capacities in the right ver-
sus left visual hemifields. Early in the memory delay, lower fre-
quency power decreased with both ipsilateral and contralateral
load but high frequency power increased only with contralateral
load. By contrast, late in the memory delay, low-frequency power
continued to decrease with ipsilateral load but increased with
contralateral load. Also, ipsilateral load effects on high frequency

power were weak and there was no effect of contralateral load.
To sum up, there were different effects on power in the LIP–FEF–
PFC network depending on whether load was presented in the
ipsilateral or contralateral visual hemifield. This motivated a
separate analysis of load effects for the 2 hemifields. This was
also supported by (1) different processing of contralateral and
ipsilateral stimuli found in visual perception studies (Tootell
et al. 1998) and (2) anatomical differences in frontoparietal con-
nectivity for ipsilateral and contralateral connections (Barbas
et al. 2005). (3) Our own prior results using these same data.
Behaviorally and neurophysiologically, the 2 hemifields seem
separate and independent. Increasing stimulus load only
affected behavioral performance to stimuli on the same side,
not those in the opposite hemifield (Buschman et al. 2011).
Neurophysiologically, we see the same thing. Stimulus informa-
tion in spiking is only degraded by increases in stimulus load in
the same hemifield (Buschman et al. 2011) and, likewise, effects
on LFP power are hemifield dependent.

In short, we assumed that power changes found in (Kornblith
et al. 2016) reflect coupling changes and analyzed the effects of
ipsilateral and contralateral load separately. The idea that
changes in phenomenological measures, like power, reflect cou-
pling changes is common; for example, pathological oscillations
are thought to be the signature of aberrant neuronal coupling in
psychiatric diseases (Uhlhaas and Singer 2012), such as autism
(Dickinson et al. 2015) or schizophrenia (Gonzalez-Burgos and
Lewis 2008). Further, in previous work (Miller and Cohen 2001) we
suggested that FB signals from PFC to lower areas support suc-
cessful execution of working memory and decision making tasks.
In this task, the animal successfully performed the task below but
not above the cognitive capacity limit. We therefore expected PFC
coupling to change below and above the capacity limit.

We focused on changes between (1) early versus late delay
and (2) different load values (1–3 items per hemifield). We
expected differences in coupling for early and late delay because
our prior work using these data showed differences in power and
synchrony between the early and late delay that depended on
load and laterality (Kornblith et al. 2016). We therefore asked if
there were any differences in PFC signals between early and late
delay. We also tested different loads because performance
degrades with increased load (Buschman et al. 2011).

To sum up, both electrophysiological and behavioral data
suggest that coupling may change in the PFC–FEF–LIP network.
Our analysis comprised 3 parts. First, we found the coupling
pattern in the PFC–FEF–LIP network during the memory delay
in order to determine their basic functional connectivity.
Second, we asked whether the strength of connections changed
with changes in contralateral and ipsilateral load and between
the early versus late memory delay. Third, we examined how
changes in load below versus above the animal’s behavioral
capacity limit affected network connectivity.

Functional Hierarchy in the PFC–FEF–LIP Network

We first examined the functional hierarchy between the PFC,
FEF, and LIP. To find this hierarchy, we adapted our earlier
canonical microcircuit (CMC) model (Pinotsis et al. 2014;
Bastos et al. 2015) to describe activity in the PFC–FEF–LIP net-
work (Figure 2).

The CMC model is based on the Predictive Coding Model
(Bastos et al. 2012) and experimental (Buffalo et al. 2011) and
theoretical observations (Bauer et al. 2014; Friston et al. 2015). It
builds on experimental observations that superficial and deep
pyramidal cells oscillate at the gamma and alpha band,

Figure 1. Behavioral performance (indicated by the color of the border/back-

ground) for all possible stimulus displays. Adding objects to the same side (ipsi-

lateral) as the target (marked with a “T”) impaired performance (rows), whereas

adding objects to the other side (contralateral) had no effect. This result argues

for separate capacities in each hemisphere.
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respectively (Bastos and Vezoli et al. 2015; Michalareas et al.
2016) and that superficial and deep pyramidal cells are the
main origins of feedforward (FF) and feedback (FB) connections
(Hilgetag et al. 1996; Vezoli et al. 2004). These spectral asymme-
tries across cortical layers (i.e., gamma power predominant in
superficial and alpha power predominant in deep layers) follow
from Predictive Coding where FB connections convey Prediction
signals at slower time scales (alpha) compared with bottom-up
connections that convey Prediction Error signals at faster time
scales (gamma). Following these observations, the parameters
of the CMC model were chosen so that superficial and deep
pyramidal cells oscillate at the gamma and alpha band, respec-
tively (Fig. 2).

We extended the CMC model to construct a large-scale model
that could describe the activity in the PFC–FEF–LIP network (the
“large-scale CMC model”; Fig. 3). It is an extension of the single
area CMC model shown in Figure 2 and comprises FF and FB con-
nections between PFC, FEF and LIP (red and black thick lines in
Fig. 3). These connections define an anatomical hierarchy (see
also Supplementary Experimental Procedures and Methods sec-
tion). Lower areas send signal to higher areas via FF connections

and receive top down input from them via FB connections. FF
(respectively FB) connections are assumed to be excitatory
(respectively inhibitory). FF (respectively FB) input from area A
to area B results in an increase (respectively decrease) of activity
in area B that is proportional to the activity in area A. The con-
stant of proportionality is the FF (respectively FB) coupling
strength. In Predictive Coding, FF and FB signals form the basis
of how the brain understands the world: according to this the-
ory, the brain’s goal is to predict sensory inputs. Brain areas
interact recurrently so that Predictions (FB signals) are com-
pared with sensory inputs and updated according to how much
they deviate from them (FF signals). The theory suggests that
this iterative process is repeated until deviations are minimized.
Thus, FF (sensory) input excites higher cortical areas. FB signals
inhibit FF inputs and allow only FF signals that were not pre-
dicted to be passed forward.

To sum so far, our large-scale CMC model predicts oscillatory
interactions and hierarchical relations in the PFC–FEF–LIP net-
work based on FF and FB coupling between brain areas and local
oscillatory dynamics within each area. It also assumes that FF
and FB signals propagate at different frequencies and convey

Figure 2. The canonical microcircuit model (CMC). The model suggests a canonical cortical architecture for the primate cortex. There are 4 populations of neurons

(spiny stellate cells, superficial and deep pyramidal cells and inhibitory interneurons). These are connected together with excitatory (red) and inhibitory (black) intrin-

sic connections (thin lines). This set of populations and connections is motivated by anatomical and theoretical considerations supporting a canonical cortical micro-

circuitry (Douglas and Martin 2007; Bastos et al. 2012; Pinotsis et al. 2013). Power spectra and LFPs produced by these cells are shown in the top right and bottom left

plots, respectively. Power spectra from each brain area are shown in the bottom right plot. Model parameters are chosen so that superficial and deep pyramidal cells

oscillate at the gamma and alpha bands. These different laminar responses result from assuming different time constants (depending on GABAergic vs. glutamatergic

neuromodulation) and intrinsic delay parameters for the different neuronal populations.
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Prediction Errors and Predictions, respectively. Thus, it allows us
to test whether changes in phenomenological measures, like
power, reflect coupling changes. It also allows us to link coupling
changes due to memory load to Predictive Coding. Increasing FB
(respectively FF) signals with increasing load would correspond to
stronger Predictions (respectively Prediction Errors). In this con-
text, failure to perform the task when the number of stimuli
exceeds cognitive capacity, implies a failure in Prediction signals.
Thus, we expected FB from PFC to break down above the capacity
limit.

The anatomical hierarchy shown in Figure 3 follows recent
studies that exploit differential laminar source and termination
patterns and tract tracing experiments to obtain the hierarchi-
cal distribution of brain areas (Hilgetag et al. 2016; Markov et al.
2014; Medalla and Barbas 2006). However, whether the func-
tional hierarchy will follow the anatomical hierarchy is not
clear. Functional hierarchies are not as robust as anatomical
hierarchies and are often task-dependent (Buschman and
Miller 2007; Bastos and Vezoli et al. 2015).

To find the functional hierarchy in the PFC–FEF–LIP network,
we fitted the large-scale CMC model to CSD data from trials
with the same memory load. This data contained information
about oscillatory interactions in different frequency bands
(Kornblith et al. 2016). For model fitting, we used Dynamic
Causal Modeling (DCM) (David et al. 2006; Pinotsis and Friston
2014; Moran et al. 2015; Pinotsis et al. 2016; Garrido et al. 2009;

Kiebel et al. 2009). DCM is a standard approach for model fit-
ting. It has been widely used to determine the directionality of
information flow and functional hierarchy in brain networks
(Gluth et al. 2015; Hare et al. 2011; Hillebrandt et al. 2014; Li
et al. 2014; Smith et al. 2006). Specifically, DCM has been
applied to the analysis of neuronal activity in frontal and parie-
tal areas and during functions ranging from attention to mem-
ory, decision making, and psychiatric diseases, similarly to the
frontoparietal network and working memory task considered
here (Mechelli et al. 2004; Garrido et al. 2009; Wang et al. 2010;
Jacques et al. 2011; Vossel et al. 2012; FitzGerald et al. 2015).

To find the functional hierarchy, we used Bayesian model
comparison (BMC) (Friston et al. 2007). BMC is a process com-
prising (1) model fitting and (2) computation of model evidence.
Model evidence is a mathematical quantity that expresses how
likely each a model is for a given dataset. Usually one considers
a set of models (model space) and finds the model with highest
evidence. We first fitted different variants of the large-scale
CMC model (Fig. 3) to our data. These model variants differed in
the connections between PFC, FEF and LIP. They are shown in
Fig. 4A and describe all possible functional hierarchies. They
are called “ALL,” “FEF,” “LIP,” and “PFC,” respectively. Model
“FEF” is the model where FEF is connected to PFC and LIP and
there are no direct connections between PFC and LIP. This was
the coupling of the model shown in Figure 3 and is what one
would expect from anatomical studies (Hilgetag et al. 2016).
Alternatives are described by the other 3 models. These are
similar to model “FEF,” where FEF is replaced by PFC and LIP.
Model “ALL” assumed that all areas were connected and infor-
mation flows in FF and FB directions between all areas. When 2
areas are connected with both FF and FB connections, we say
that they are connected with reciprocal (R) connections.

To find the model evidence, BMC uses an approximation
called Free Energy. Conceptually, BMC can be thought of as a
generalization of classical model comparison approaches, for
example, Bayesian Information Criterion (BIC). The difference
is in the cost function used. BMC uses Free Energy that also
includes a complexity term in addition to an accuracy term. For
a model to have the highest evidence both terms should be
maximized: the accuracy term is maximized when the model
fits the data best (i.e., it has the smallest error). The complexity
term is maximized when all model parameters are necessary
for fitting the data. If a model has parameters that are not nec-
essary, this term will not be maximum and therefore the evi-
dence for that model will be lower. The reason is that unnecessary
parameters will have large posterior correlations between
them. Each parameter does not explain the data in a unique
way (similarly to coefficients of determination in classical statis-
tics, posterior correlations quantify the explanatory power of
model parameters in Bayesian statistics). These correlations will
enter into the complexity term and make it smaller (for more
details, see Friston et al. 2007). Even if the model with the high-
est number of parameters fits the data best (has the maximum
accuracy) this model will not have the highest evidence if some
parameters are unnecessary (the complexity term will not be
maximum).

We performed BMC between variants of the large-scale CMC
model. This allowed us to find the model that best fit the data and
whose parameters were necessary for fitting the data (i.e., themodel
that did not “over-fit” the data). We fitted the 4 models of Figure 4A
to 4 different datasets. The first 2 datasets included CSD data from
trials with 1 contralateral object, from the early (500–900ms after
sample onset) or late (1100–1500ms after sample onset) delay
period. The last 2 datasets included CSD data from trials with

Figure 3. Large-scale CMC model. The model describes the large-scale structure

of the primate cortex. Different brain areas are connected with extrinsic connec-

tions (thick lines). Intrinsic connections are as described in Figure 2. Extrinsic

connections are as follows: Feedforward (FF) connections are assumed to origi-

nate in superficial layers and target input spiny stellate cells and deep pyramidal

cells. Feedback (FB) connections are assumed to originate from deep layers and

target superficial pyramidal cells and inhibitory interneurons. This pattern of

extrinsic and intrinsic coupling has been shown to explain activity in parietal

and frontal areas (Heinzle et al. 2007; Ma et al. 2012; Phillips et al. 2015; Ranlund

et al. 2016; Díez et al. 2017). We have omitted extrinsic connections between PFC

and LIP in the figure and depicted 1 out of 4 possible connection patterns that

correspond to results from anatomical studies (Hilgetag et al. 2016). This is vari-

ant “FEF” of the large-scale CMC model (see main text for details).
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one ipsilateral object (and the same delay periods). The winning
model had the highest evidence among all models considered.
In general, the difference in model evidence between (win-
ning) model A and its runner up B is useful because it imme-
diately yields the probability that model A is more likely
than model B (this is called exceedance probability of model A
vs. B) (To obtain the exceedance probability from the difference
in model evidence one has to apply a sigmoid function (Kass
and Raftery 1995).). It can be shown mathematically, that if this
difference is bigger than 3, the exceedance probability is equal
to 1, that is the winning model is 100% more likely than its run-
ner up and any other model that was considered. A summary
of the fitting process is included in section “Dynamic Causal
Modeling” of Supplementary Material. This process has also
been described in detail in several earlier publications (Friston
et al. 2012; Pinotsis et al. 2014).

We first fitted CSD data from trials with one contralateral
object during the early delay period (different memory loads are
presented below). The results of our analysis are shown in Figure
4. Model fits are shown in Figure 4D. Plots show alpha and
gamma power model fits: in most cases model predictions (solid
lines) fully overlapped with experimental data (dashed lines).
This is not surprising as priors have been carefully chosen to
accurately reproduce alpha and gamma activity (Bastos et al.

2012; Friston et al. 2015). Small discrepancies between data and
model fits occurred only when CSD power was weak (~0.05V2/Hz,
top right panel in Fig. 4D). Model fitting yielded posterior parame-
ter estimates. Including these estimates in our model, we
obtained simulated LFPs. These are shown with solid lines in
Figure 4E. Observed LFPs are shown with dashed lines.

Figure 4B shows the model evidence for the 4 models tested
(corresponding to possible hierarchies shown in Fig. 4A). The
winning model was model “ALL”: all areas were connected with
reciprocal connections (highlighted with a red frame in Fig. 4B,
shown in Fig. 4C). Model fits and simulated LFPs show a good fit
to experimentally observed data (Fig. 4D,E, respectively).

Supplementary Figures S1–S3 show the corresponding
results for contralateral load and late delay and ipsilateral load
and early and late delay, respectively. These are very similar to
Figure 4. Although load effects on power were different between
early and late delay and for contralateral and ipsilateral load
(see Fig. 5 in Kornblith et al. 2016), we found that the func-
tional hierarchy did not change between the early and late
delay periods and was also the same for contralateral and ipsilat-
eral objects. Model fits and LFPs are also shown in Supplementary
Figures S1B–S3B and S1C–S3C and are very similar to Figure 4D,E.

For a contralateral object, the difference in model evidence
between model “ALL” and its runner up was Δ =F 29 for early

Figure 4. (A) Possible functional hierarchies in the PFC–FEF–LIP network. (B) Bayesian model comparison (BMC) results after fitting variants of the large-scale CMC

model to trials with one contralateral object during the early delay period. (C) The model with highest evidence was model “ALL.” All brain areas occupy the same

hierarchical level. (D) Model fits to CSD data. (E) Using posterior parameter estimates, we simulated LFPs. In all plots, dashed lines depict model predictions and solid

lines depict observed data (CSD or LFPs).
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delay and Δ =F 111 for late delay (Fig. 4B and Supplementary
Fig. S1A). For ipsilateral object, the difference in model evidence
of the winning model “ALL” with respect to the runner up was
Δ =F 60 during early delay and Δ =F 21 during late delay
(Supplementary Figs S2A and S3A). Because ΔF was bigger than
3, model “ALL” had exceedance probability equal to 1 for all 4
datasets considered. These results were robust to using trials
with different memory loads (see Supplementary Fig. S4). In all
cases, model “ALL” had the highest evidence. This means that
the functional hierarchy in the PFC–FEF–LIP network did not
change when changing memory load and for different parts of
the delay period despite the different load effects on spectral
power (A careful reader might question if finding model “ALL”
(the model with most parameters) as the winning model might
be the result of overfitting. Above, we laid out technical argu-
ments about how the particular cost function (Free Energy)
used for model comparison prevents this. We also noted that
we obtained the same result using 12 different datasets (Fig. 4B
and Supplementary Figs S1A–S3A and S4). On top of these argu-
ments, we note that we found a different model as the winning
model using the same datasets but changing the threshold of
high pass filtering. During our preliminary investigations (not
shown), we had found winning model “FEF” by using trials
where ipsilateral load was varied and focusing on low fre-
quency responses only (2–50 Hz).).

To sum so far, we found that all 3 brain areas in the PFC–
FEF–LIP network had reciprocal functional connections. In other
words, all 3 areas were on the same hierarchical level. The pat-
tern of FF and FB connections (functional hierarchy) did not
change with memory load and for early versus late delay. Next,
we compared alternative variants of the winning model of the
first part of our analysis (model “ALL”) where we allowed a dif-
ferent subset of FF and FB connections to change with load
(and the rest of the connections were left unaffected). This
revealed changes in the strength of functional connections
with changes in memory load (Note that in the analysis above
we fitted the large-scale CMC model to data from trials with the
same memory load. Our goal was to test whether certain con-
nections were present or not. In the analysis below, we fitted
the model to data from trials with different memory load
simultaneously. This allowed us to focus on changes of model
parameters with increasing load.).

Feedforward and Feedback Coupling Strengths Changed
With Load and Time

Above, we saw that the model “ALL” best captured the func-
tional hierarchy between PFC, FEF, and LIP (i.e., they all had

reciprocal, R, connections with each other). Here, we test
whether FF, FB, or R coupling in the early versus late memory
delay was affected by working memory load. We did so using
BMC to compare variants of model “ALL”. In these model var-
iants, different FF, FB, or R connections were allowed to
change for different load conditions. These model variants are
described by an acronym shown in the entries of Table 1. They
corresponded to all possible connections that could change with
increasing object load and included models where connections
did not change. There were 64 such variants. The first 16 var-
iants (first 2 lines of Table 1) are also depicted in Figure 5. The
same variant was fitted to CSD data for all contralateral and
ipsilateral load conditions and from data from early or late
memory delay. Coupling parameters were allowed to change
progressively between the lowest and highest load conditions.
Coupling changes between different load conditions were
assumed to be linear increments (increases or decreases) to cou-
pling corresponding to lowest load. In other words, load changes
were assumed to have modulatory effects on cortical coupling
and are called trial specific effects in DCM. This is similar to trial
specific effects in fMRI literature (Coderre and van Heuven 2013;
Den Ouden et al. 2008; Gordon et al. 2015).

Each variant had an acronym (Table 1). For example, in vari-
ant BBF, the feedback connections between LIP and FEF and FEF
and PFC and the feedforward connections between LIP and PFC
were allowed to change with load. Connections that were not
allowed to change with increasing memory load were depicted
with solid lines. Connections that were allowed to change were
depicted with dashed lines. Using BMC, we identified the most
likely model (i.e., the set of connections affected by contralat-
eral and ipsilateral load and in the early vs. late delay) among
the 64 alternatives (see Fig. 6A for contralateral load and early
delay and Supplementary Figures S5A–S7A for contralateral
load and late delay and ipsilateral load and early and late delay,
respectively). These Figures include bar plots of model evi-
dence. We call the space of all possible variants “model space”.
This is shown in the horizontal axis and is the same as in
Table 1. Figure 6B,C and Supplementary Figures S5B–S7B and
S5C–S7C show model fits to CSD data and simulated and
observed LFPs, respectively. These are similar to results in
Figure 4D,E and Supplementary Figures S1B–S3B and S1C–S3C.

The winning models are shown in Figure 7A(i)–(iv): RFR and
ROB were the winning models for contralateral load during
early and late delay and BFB and RRR were the winning models
for ipsilateral load during early and late delay. Model evidence
of winning models is shown with red bars. The difference in
model evidence between them and their runner ups was Δ =F 1
and Δ =F 24 for contralateral load during early and late delay

Table 1 Model space including all possible variants of model “ALL”

1: BBB 2: BBR 3: BBO 4: BBF 5: BRB 6: BRR 7: BRO 8: BRF
9: BOB 10: BOR 11: BOO 12: BOF 13: BFB 14: BFR 15: BFO 16: BFF
17: RBB 18: RBR 19: RBO 20: RBF 21: RRB 22: RRR 23: RRO 24: RRF
25: ROB 26: ROR 27: ROO 28: ROF 29: RFB 30: RFR 31: RFO 32: RFF
33: OBB 34: OBR 35: OBO 36: OBF 37: ORB 38: ORR 39: ORO 40: ORF
41: OOB 42: OOR 43: OOO 44: OOF 45: OFB 46: OFR 47: OFO 48: OFF
49: FBB 50: FBR 51: FBO 52: FBF 53: FRB 54: FRR 55: FRO 56: FRF
57: FOB 58: FOR 59: FOO 60: FOF 61: FFB 62: FFR 63: FFO 64: FFF

Note: Each variant had an acronym. The first letter in this acronym corresponds to the connections that were allowed to change with load between LIP and FEF. The

second letter corresponds to the connections that were allowed to change between FEF and PFC. The third letter corresponds to the connections that were allowed to

change between PFC and LIP. The letters F, B, and R correspond to feedforward, feedback, and reciprocal connections, respectively. The letter O corresponds to con-

nections that were not allowed to change.
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and Δ =F 0.7 and Δ =F 4 for ipsilateral load, respectively. The
corresponding model exceedance probabilities were 74% and
100% for variants RFR and ROB and 65% and 100% for variants
BFB and RRR, respectively.

What these models showed was that changing contralateral
load affected R coupling between LIP and FEF and FB coupling
between PFC and LIP throughout the delay period (Fig. 7A(i, ii)).
However, FF input to PFC from the other 2 brain areas was
affected by contralateral load only during early delay (Fig. 7A
(i)). Also, changing ipsilateral load affected FB coupling between
LIP and the other 2 areas and FF coupling between FEF and PFC
throughout the delay period (Supplementary Fig. S7A(iii, iv)).
During late delay, on the other hand, all connections in the net-
work were affected by changing load: on top of the above con-
nections, FF coupling between LIP and the other 2 areas and FB
coupling between FEF and PFC changed with ipsilateral load
(Supplementary Fig. S7A(iv)) (The results of Fig. 7A show that
models with R of FF connections between LIP and FEF are
favored in the corresponding model comparisons. These are
the models 17–32 and 49–64, see also rows 3–4 and 7–8 in
Table 1. These results can also be useful for family-wise infer-
ence which we will consider in future work.).

To sum this analysis, we identified different sets of connec-
tions that were affected by increasing memory contralateral and
ipsilateral load during different parts of the delay period. Having
established load-specific changes in connection strengths, we can
now proceed to our last analysis. In this last set of analyses we
examine in greater detail how coupling changed with changes in
load below and above the animal’s working memory capacity.

Figure 5. Plots showing variants of model “ALL.” These correspond to the 16

variants included in first 2 lines of Table 1. Each variant had an acronym. The

letters in the acronym correspond to connections that were allowed to change

for different load conditions. These are also shown with dashed lines. Solid

lines depict connections that were not allowed to change.

Figure 6. Contralateral WM Load Effects on FF and FB coupling in the PFC–FEF–LIP network during early delay. Plots follow the format of Figure 3. (A) Bayesian model

comparison (BMC) results after fitting the 64 variants of model “ALL” included in Table 1. (B) Model fits to CSD data. (C) Simulated and observed LFPs. In all plots,

dashed lines depict model predictions and solid lines depict observed data (CSD or LFPs).
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Increases and Decreases in Feedforward and Feedback
Coupling Strengths Below and Above Capacity

Here, we explore the changes in coupling between areas as a
result of changes in load. To organize this discussion, we dis-
tinguish changes below (from load 1 to load 2) and above (from
load 2 to load 3) the animal’s behavioral capacity. There were
as many coupling parameters in our model as thick lines in
winning model “ALL” (Fig. 4C).

The results below were obtained from the same model fits
as in the previous section. We used model fits of the winning
model only (winning models are shown in Fig. 7A). In the previ-
ous section, the winning model (and the other 63 alternatives
of Table 1) was fitted to CSD data for all load conditions simul-
taneously. Coupling strengths were allowed to change progres-
sively between the lowest and highest contralateral and
ipsilateral load. We also used CSD data obtained during early
and late delay. The set of coupling strengths that changed with
load determined the winning model in each case. Below, we
discuss these strengths and their progressive changes (Fig. 7B).

Coupling strengths corresponding to the lowest load (one
contralateral or ipsilateral object) were rescaled so that they
were equal to 100%. The 3 blue bars in each panel show cou-
pling strength for loads 1, 2, and 3 (from left to right). This

reveals progressive changes in the same coupling strength as
load increases. Strengths were normalized with respect to the
lowest load condition. Besides the blue bars, each panel
includes 3 additional lines connecting adjacent bars: black
(shows coupling changes below the capacity limit), solid red
(shows coupling change above the capacity limit) and dashed
red (separates coupling below and above the capacity limit).
Recall that FB connections were inhibitory while FF connec-
tions were excitatory (these are shown with black and red
arrows connecting brain areas in Fig. 4C). In Figure 7B(i) (respec-
tively B(ii)), we show changes in coupling strengths during the
early (respectively late) delay period when contralateral load
changes. In Figs 7B(iii) (respectively 7B(iv)), we show the corre-
sponding changes when ipsilateral load changes.

Almost all parameters (15/17) were significantly modulated
above the capacity limit: they showed marked increases or
decreases of at least 25% or more. We will call these changes
“strong” as opposed to other changes that we will call “weak.”
Below the capacity limit fewer parameters were strongly modu-
lated (9/17). We first focused on changes in coupling strength
below the capacity limit. These changes can be readily seen by
focusing on the slope of black lines in Figure 7B(i, ii): almost
horizontal (respectively oblique) lines correspond to weak

Figure 7. (A) Models that had the highest evidence for each experimental condition. Dashed lines denote connections that were modulated by load. RFR and ROB

were the winning models for contralateral load during (i) early and (ii) late delay and BFB and RRR were the winning models for ipsilateral load during (iii) early and

(iv) late delay. (B) Changes in neuronal coupling strengths due to changes in (i) contralateral load during early delay; (ii) contralateral load during late delay; (iii) ipsi-

lateral load during early delay; and (iv) ipsilateral load during late delay. Coupling strengths corresponding to the lowest load are shown with blue bars. The cognitive

capacity limit is shown with a vertical red dashed line. Strength changes below (respectively above) the capacity limit are shown with black (respectively red) lines.
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(respectively strong) changes. Changes in connections involv-
ing PFC followed a consistent spatiotemporal pattern regardless
of whether load change was contralateral or ipsilateral: they
were weak during early delay and strong during late delay sig-
naling bigger PFC involvement closer to the decision time (i.e.,
during late delay) (This general trend had one exception: the FF
connection from FEF to PFC which was weakly modulated
when increasing ipsilateral load during late delay, see Fig. 7B
(iv)a.). Conversely, changes in the other FF and FB connections
(between LIP and FEF) followed the opposite pattern: they were
strong during early delay and weak during late delay but for
contralateral load only (for ipsilateral load they were strong
throughout the delay period).

Specifically, for contralateral load during early delay, we
observed strong changes in the FF and FB connections between
LIP and FEF but not PFC, compare black lines in Figure 7B(i)a, (i)d
with black lines in Figure 7B(i)b, (i)c, (i)e. Similarly, for ipsilateral
load, compare black line in Figure 7B(iii)b with black lines in
Figure 7B(iii)a, (iii)c. This also means that excitatory input to PFC
did not increase due to higher load (black lines in Fig. 7B(i)b, (i)c,
(iii)a). At the same time, FEF input from LIP decreased with
increasing load (black line in Fig. 7B(i)a) and input from FEF to
LIP increased (black lines in Fig. 7B(i)d, (iii)b).

For contralateral load during late delay, the above pattern of
connection changes was reversed: connections between LIP
and FEF showed weak modulations with load (black lines in
Fig. 7B(ii)a, (ii)b). At the same time, FB input from PFC to LIP
showed a strong increase with increasing load (black line in
Fig. 7B(ii)c). Similarly, for ipsilateral load FF and FB PFC connec-
tions also showed a strong increase with load (black lines in
Fig. 7B(iv)b, (iv)e, (iv)f). However, in contrast to what we observed
for contralateral load, connections between LIP and FEF contin-
ued to show strong modulations (as in the early delay period,
see black lines in Fig. 7B(iv)c, (iv)d).

Interestingly, above the cognitive capacity limit (when going
from load 2 to load 3), changes in connections in the PFC–FEF–
LIP network were strong. The only exception was the LIP–FEF
connections during early delay for contralateral load and late
delay for ipsilateral (red lines in Fig. 7B(i)d, (iv)c). We will see
below that connections between LIP and FEF showed the oppo-
site pattern of changes above capacity in comparison to their
pattern below capacity. Also, signals to and from PFC were
affected by load during both early and late delay (below capac-
ity they were affected by load only during late delay). Most
importantly, FB signals from PFC and FEF were modulated dif-
ferently for contralateral and ipsilateral load.

During early delay, FF input to PFC from the other 2 brain
areas was strongly reduced above the capacity limit, see red
lines in Figure 7B(i)b, (i)c, (iii)a. Similarly, FB input from PFC to
LIP increased above capacity during early delay (red lines in Fig.
7B(i)e, (iii)c). This was also the case for contralateral load during
late delay (red line in Fig. 7B(ii)c). However, for ipsilateral
objects and late delay FB signals from PFC broke down: they
showed a strong reduction (as opposed to increase in all other
cases) when exceeding the capacity limit (red lines in Fig. 7B
(iv), (iv)f). This was accompanied by a strong reduction (break
down) in FF input from LIP to PFC (red line in Fig. 7B(iv)b).
These were the only cases where coupling above the capacity
limit was very similar to coupling for lowest load. FF input from
FEF on the other hand showed an increase (red line in Fig. 7B
(iv)a). FF input from LIP to FEF also increased above capacity
regardless of object hemifield and delay period (red lines in Fig.
7B(i)a, (ii)a, (iv)c). FB input from FEF reduced for early (red lines
in Fig. 7B(i)d, (iii)b) and increased for late delay above capacity

for both contralateral and ipsilateral objects (red lines in Fig. 7B
(ii)b, (iv)d).

Above we described coupling changes with increasing load.
To quantify how likely these changes were we used posterior
probabilities (coupling estimates were found using DCM which
is a Bayesian approach for model fitting). These are shown in
Supplementary Figures S8 and S9. They are the probabilities of
a significant nonzero change with respect to the coupling
strength for the lowest load. Because all parameters were nor-
malized to the lowest load condition, we included posterior
probabilities only for load 2 and load 3. These are shown in
matrix form. Columns correspond to the brain areas from
which connections originated and rows to areas where they
terminated. The number of these matrices is one less than the
number of possible loads (there are no probabilities for the low-
est load). The posterior probability of changes in coupling
strengths for contralateral load ranged between 53% and 100%
(respectively 62–100%) for early (respectively late) delay, see
Supplementary Figure S8. The posterior probabilities for cou-
pling parameters for ipsilateral load ranged between 71% and
100% (respectively 54–100%) for early (respectively late) delay,
see Supplementary Figure S9.

Discussion
We studied the effects of changing working memory load on
neuronal dynamics during a change detection task. We ana-
lyzed CSD data obtained using LFPs from frontal and parietal
areas, namely, PFC, FEF, and LIP. Activity in this frontoparietal
network has been found to consistently change with training
(Goldman-Rakic 1995; Li et al. 1999) and has been associated
with cognitive capacity (Rottschy et al. 2012).

We followed up on earlier work (Buschman et al. 2011;
Kornblith et al. 2016), where we had found that neuronal activity
in high, but not low, frequencies reflects independent proces-
sing of ipsilateral and contralateral objects and changes sub-
stantially between early and late delay period. Independent
processing of objects in different hemifields has also been con-
firmed by (Matsushima and Tanaka 2014) and is supported by
early anatomical studies (Goldman-Rakic and Schwartz 1982). In
(Kornblith et al. 2016), neuronal activity changes with load were
captured as spectral power effects. However, these effects were
similar below and above the cognitive capacity, which appears
at odd with a reduction in behavioral performance observed
when capacity is exceeded. Further, earlier power and syn-
chrony analyses did not describe the directionality of neuronal
interactions. Here, we aimed at a mechanistic explanation of
load effects by focusing on changes in the strength and direc-
tionality of neuronal coupling. We extended our earlier model
based on Predictive Coding (CMC model; Pinotsis et al. 2014;
Bastos and Litvak et al. 2015) and used it to analyze CSD data.
The CMC model can predict oscillatory interactions and hierar-
chical relations in the PFC–FEF–LIP network based on FF and FB
coupling between brain areas and local oscillatory dynamics
within each area. It has been validated pharmacologically
(Muthukumaraswamy et al. 2015), using data from single-gene
mutation channelopathy (Gilbert et al. 2016) and aging studies
(Cooray et al. 2014; Moran et al. 2014). The model has also
explained the manipulation of sensory expectation and atten-
tion engaging frontoparietal networks in healthy subjects and
patients (Auksztulewicz and Friston 2015; Cooray et al. 2014;
Díez et al. 2017; Phillips et al. 2015; Ranlund et al. 2016). A very
similar model was recently used to explain context-dependent
dynamics in hierarchical brain networks (Mejias et al. 2016).
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We first studied the basic functional hierarchy in the PFC–
FEF–LIP network. We determined its form and asked whether
this changed with memory load and time during the delay
period. Anatomical connections provide the substrate for func-
tional connections but functional hierarchies can be different
than anatomical hierarchies. They can be task-dependent and
even change during a task (Buschman and Miller 2007; Bastos
and Vezoli et al. 2015) as a result of goal-directed behavior
(Miller 1999; Miller and Cohen 2001) and of processing abstract
information (Koechlin et al. 2003). Also, there are reciprocal
anatomical connections between frontal areas are other frontal
and parietal areas (Medalla and Barbas 2006; Hilgetag et al.
2016). Some studies have placed PFC at the top and parietal
areas at the bottom of functional hierarchies in visual percep-
tion tasks (Bastos and Vezoli et al. 2015; Michalareas et al.
2016). However, the functional hierarchy in the change detec-
tion task we studied here was unknown.

To find the functional hierarchy, we compared variants of
our model corresponding to different hierarchical relations
between PFC, FEF, and LIP using BMC (Friston et al. 2007). We
found that PFC, FEF, and LIP had reciprocal functional connec-
tions (they were at the same hierarchical level). This result was
the same regardless of memory load and time during the delay
period. However, load effects on power were different of low for
contralateral and ipsilateral objects and early versus late delay
(Kornblith et al. 2016). Therefore, it might well be that although
the functional hierarchy remained the same across trials with
different load and throughout the delay period, the amount of
signal transmitted through FF and FB connections, that is, the
strength of FF and FB connections, changed with load and time.

Thus, we then identified different subsets of FF and FB con-
nections whose strength changed with load during different
parts of the delay period. We used BMC to compare different
models corresponding to all possible combinations of connec-
tions that might be affected by load. After finding the most
likely model, we focused on the corresponding changes in cou-
pling strengths. These explain the weak load effects on power
(1–2% power change per added object) found in Kornblith et al.
(2016) without changing the functional hierarchy.

We found that below the capacity limit connections involv-
ing PFC were affected later than connections involving other
frontal and parietal areas for contralateral and ipsilateral load.
During early delay, connections between LIP and FEF were
strongly affected by load while connections involving PFC did
not change much. FF input from LIP decreased with increasing
load while FB input to LIP increased. This could be related to
the fact that receptive fields observed in LIP are unilateral and
have a narrow spatial tuning (Platt and Glimcher 1998). During
late delay, connections involving PFC were strongly modulated
for contralateral and ipsilateral load but connections between
LIP and FEF were not affected for contralateral load. However,
when ipsilateral load changed, changes in connections between
LIP and FEF remained strong during late delay (similarly to
early delay). This could be related to the widespread and more
dense patterns of ipsilateral as opposed to contralateral con-
nections to frontal areas (Barbas et al. 2005). Based on the above
results, our model predicts that, below the capacity limit, PFC
engages strongly in network activity only close to the decision
time (above capacity, PFC engages throughout the delay period,
see below). Further, as load increased, we observed increases in
both FF input to PFC and FB signals from PFC to other frontal and
parietal areas. These reflected increased FF drive due to higher
load and increasing FB stabilizing signals from PFC to counteract
increased in cognitive demands (load) due to increased FF drive

in earlier areas. They are similar to earlier modeling results
(Macoveanu et al. 2006; Edin et al. 2009; Wei et al. 2012).

Above the cognitive capacity limit, connections that we had
previously identified to be affected by load changes showed
strong modulations. Connections involving PFC were affected
by load throughout the delay period. Importantly, FB connec-
tions were modulated differently by contralateral and ipsilat-
eral load. FB stabilizing signals from PFC increased above
capacity for contralateral load but were significantly reduced
(broke down) for ipsilateral load. This could explain reduced
behavioral performance when the total number of objects in
the same (but not the opposite) hemifield as the target object
exceeded the capacity limit found by (Buschman et al. 2011).
This also provides an interesting link to Predictive Coding.
Break-down of Prediction signals coincided with impaired
behavioral performance. This difference in coupling changes
while changing contralateral versus ipsilateral load supports
earlier findings about independent capacities of the 2 hemi-
fields (Buffalo et al. 2011; Matsushima and Tanaka 2014).
Stabilizing signals from FEF to LIP also broke down above
capacity for ipsilateral, but not contralateral load. This supports
an important role of FB from frontal areas in successful perfor-
mance. Interestingly, FB signals from FEF broke down earlier
than PFC FB signals (these broke down closer to decision time).
This might be related to the fact that loss of information about
object identity in PFC occurs later than other frontal areas
(Buschman et al. 2011).

To sum up, we found that neuronal coupling changes as a
result of changing the number of objects maintained in work-
ing memory. These changes are dynamic and evolve as the
time for behavioral response (decision) approaches. We also
found that FB coupling breaks down when the number of ipsi-
lateral objects is above the cognitive capacity limit and that
this occurs first in parietal and then frontal areas. These results
shed new light in coupling changes that might underlie
reduced cognitive capacity and behavioral performance. They
also suggest network-specific pathological changes in neuronal
coupling that might occur in various neurological and psychiat-
ric diseases and disorders (Luck and Vogel 2013).
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Supplementary material is available at Cerebral Cortex online.
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