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SUMMARY

The property of mixed selectivity has been discussed at a computational level and offers a strategy to maxi-
mize computational power by adding versatility to the functional role of each neuron. Here, we offer a biolog-
ically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We
define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be ob-
tained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display
mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selec-
tivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear
mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream
readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of vari-
ables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons.
Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting
which variables are mixed and transmitted to the readout.
OVERVIEW

Not all brain functions are complex. They do not need to be. Sim-

ple functions can be performed by simple architectures or single

layers. Seeing an object approaching, tasting a poison, detect-

ing food in your esophagus and swallowing it, and recoiling

from something that causes tissue damage are all simple func-

tions that simple circuits and cells can accomplish. The architec-

tures that underpin these functions can have straightforward

properties or simple combinations of properties that serve this

function, much like a railroad track providing a straightforward,

direct route. The lack of flexibility makes these functions quick,

efficient, and stereotyped.

By contrast, the neural systems responsible for complex

thought and behavior mandate flexibility. Intelligent thought is

flexible thought. All creatures can react reflexively to the environ-

ment. But animals with more complex nervous systems can

change how they behave by integrating more parameters into

the decision-making process. They tailor ongoing behavior to
Neuron 112,
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the current situation and to an ever-shifting set of subgoals

and goals. They also take into account an accumulating history

of events that bias decision thresholds. This capacity for gener-

alizing context-dependent behavior is crucial for our ability to

project our behavior into the future, allowing us to make and

execute plans.

The neural substrate for this flexibility can be seen inmany pla-

ces, but it is especially prevalent in cortical areas known to be

critical for flexible behavior, such as the prefrontal cortex

(PFC). Individually, PFC neurons have adaptive and multivariate

response properties,1,2 referred to as ‘‘mixed selectivity.’’3–5

They wear many hats, showing different patterns of selectivity

in different behavioral contexts. Information is often widely

distributed across them. The signal-to-noise ratio of responses

for each individual neuron is low, but decodable information for

the population is high. PFC neurons have moderately high basal

firing rates and high proportions of neurons responding to many

stimuli—relying on mixing more diverse inputs that give each in-

dividual neuron many jobs encoding many variables. Our view of
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Box 1. The history of the theory of mixed selectivity

Since the time that artificial neural networks were conceived, their typical units have always performed two basic operations: sum

multiple signals coming from different neurons and then compute a nonlinear function to this sum. It is then not surprising that the

units of these networks exhibit mixed selectivity, as it is almost unavoidable if the input neurons encode different signals. What is

less obvious is an understanding of the computational role of mixed selectivity neurons. This has always been one of the important

roles of theoretical neuroscience. From the early days of neural network theory, it has been clear that some representations simply

do not work and need to be changed. David Marr often speaks about recoding,8 invoking it when patterns of activities that need to

be discriminated are too similar. The first one to realize the importance of mixing is probably Rosenblatt,9 the father of modern

learning neural networks. His perceptron, in the original version (not in one discussed in the book Perceptrons10), had an interme-

diate layer of neurons that were randomly connected to the inputs. These neurons had mixed selectivity, and they were necessary

to make the representations linearly separable and hence classifiable by a simple linear readout. Other more recent recurrent

neural networks were using the same ideas (random projections) to generate mixed selectivity representations with higher dimen-

sionality11 (echo state machine12, liquid state machine13). The idea behind the SVMs (support vector machines) with nonlinear ker-

nels14 is again the same: to implicitly transform the representations to make them linearly separable. SVMs with nonlinear kernels

are equivalent to a simple neural network with a very large intermediate layer of nonlinear units that mix the inputs nonlinearly, ex-

panding the dimensionality. When we studied attractor neural networks that implement finite-state machines,3 we realized that we

had to use a similar approach and, for the first time, we related dimensionality expansion and nonlinear mixed selectivity in

clear terms.

Besides this important but also basic general idea of dimensionality expansion, there were several other theoretical works discus-

sing the importance of mixing in specific problems. For example, in discussions of parallel distributed processing and specifically

distributed representations, the point of conjuctive coding is highly relevant to mixed selectivity. Here, Rumelhart et al. point out

that the ‘‘binding problem’’ can be solved using neurons capable of local tuning15—a capability potentially endowed by differential

neuromodulation at each dendritic segment that may be electrically compartmentalized.

Another example: mixed selectivity to the retinal location of a visual stimulus and the position of the eyes can be used to generate a

representation of an object’s position and then determine the changes in joint coordinates needed to reach the object.16–19 Neu-

rons with mixed selectivity to the identity of a visual stimulus and its ordinal position in a sequence have been used to model serial

workingmemory.20Mixed selectivity to stimulus identity and to a context signal have been used tomodel visuomotor remapping.21

More generally, complex nonlinear functions of the sensory inputs, like motor commands, can be expressed as a linear combina-

tion of basis functions.22
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the PFC has evolved: rather than trains of thought on railroad

tracks,6 the PFC more closely resembles cars on the road and

highway system. Neurons and their axons provide the high-

ways—the anatomical architecture over which thoughts, feel-

ings, sensations, and motor commands can travel. But the way

the roads are used is vastly different based on the immense

complexity of the electrical and chemical impulses being traf-

ficked all around the brain. Vehicles of information can take

different paths and different destinations. They might share a

common path with some vehicles at some times and others at

other times. This autonomy provides maximal freedom and

dimensionality.

With this comes depth of thought. The multivariate neuronal

properties can increase the representational dimensionality of

the population, allowingmore complex computations.4,5 Further,

the brain tailors the dimensionality to the task at hand. Dimen-

sionality expands and contracts to focus processing along rele-

vant dimensions.7 This keeps processing on-task and goal

directed.

In short, mixed selectivity gives the brain the processing po-

wer needed for complexity and flexibility. The cost of this oppor-

tunity for flexibility is the inability to take advantage of the regu-

larities of the world to generalize to novel situations. Mixed

selectivity allows representation of a large number of different

situations in every detail, but sometimes we need to discard or

ignore some information to make the right decision.
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In this perspective piece, we consider the impact of mixed

selectivity on our understanding of neural processing, with the

goal of grounding it in a biological implementation. To maximize

the transparency of the concept of mixed selectivity, we will first

define and describe mixed selectivity and then discuss its

importance.

WHAT IS MIXED SELECTIVITY?

There has been some confusion around this term, which has

emerged from a number of related concepts (Box 1), but the

definition is simple. At its core, mixed selectivity involves a single

cell showing consistent activity, which is modulated by multiple

statistically independent variables. This single-cell behavior

eventually has broad implications for the activity of neuronal

ensembles, enabling them to process and integrate a range of in-

dependent inputs.

Pure selectivity
In many ways, the notion of pure selectivity can be traced to

Hubel and Wiesel’s description of the ‘‘simple and complex

cells’’ in the primary visual cortex. This pioneering work was a

leap forward as it was one of the first demonstrations of the func-

tionality of single neurons. Simple and complex cells spiked to

single features. For some time, most theories of cortical function

considered pure selectivity.
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Figure 1. Delineating pure, linear mixed, and
nonlinear mixed selectivity using a context-
dependent task
(A) In the task, a subject is presented with one of two
context signals and subsequently makes a choice
from two cues. Rewards are determined based on
the initial context.
(B) A flowchart accompanied by circuits elucidates
the neuron response categories: pure, linear mixed,
or nonlinearly mixed selectivity. Within each circuit,
two initiating neurons are distinctly selective for
either the context or the cue, directing their specific
signals (Ia and Ib) to a third downstream neuron.
Alongside each circuit, diagrams exhibit the neu-
ron’s firing rate in relation to the cumulative input
current. The neuron initiates activity when the
combined current (here depicted as a histogram)
surpasses a certain threshold, leading to a linear
increase in the firing rate. If a neuron’s activity is
solely representative of a single input, it is termed
‘‘purely selective,’’ exemplified in the top circuits
where activation is exclusively due to the cue signal.
Neurons that represent a linear combination of the
independent inputs, consistently responding to their
variable combinations, are termed ‘‘linear mixed
selective,’’ demonstrated by the middle circuits.
Here, the neuron has diminished firing rates for in-
dividual signals but is most active when both signals
combine. Conversely, ‘‘nonlinear mixed selective’’
neurons, represented in the bottom circuits, cannot
be described as a linear sum of inputs. Here, the
downstream neuron only becomes active when
both the cue and context signals are present
simultaneously.
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The focus then was, understandably, on the first-order ques-

tions and parameters we could confidently measure—how neu-

rons represent simple sensory features or produce motor out-

puts. This, after all, was one of our first forays into how

cortical neurons process information. This was studied in

experimental paradigms designed to be high fidelity, robust,

and intentionally redundant. The purpose was to reduce vari-

ability (‘‘noise’’) so that we could be confident about the pro-

cesses that sense and move our bodies within our envi-

ronments.

As we built on this foundational work, our view of cortical

neurons has become more dexterous and multifunctional.

The more we learn, the more noise is a misnomer. It is

rather factors that experimentalists did not or could not

measure.23 Initially, the idea that neurons could do more

than one thing was blasphemy (one of us was accused of

‘‘turning cortex into a bowl of porridge’’ at a major meeting).

But evidence kept amassing for multifunctionality, including
observations such as neurons releasing

different neurotransmitters for different

functions.24,25

It is now evident that pure selectivity,

as important as it is, is more of an excep-

tion than the rule, especially in the

cortex. Its habitats tend to be at the

input edges of sensory systems and at

the output edges of motor systems. In

much of the rest of the cortex, the
preponderance of neurons show multifunctional selec-

tivity.7,26–43

Linear mixed selectivity
Within mixed selective neurons, there are either nonlinear

or linear mixed selectivity neurons. Linear mixed selec-

tivity4,44–46 neurons are typically the result of a process of

abstraction and can facilitate generalization.34 Linear mixed

selectivity neurons show activity that can be expressed as a

weighted sum of the responses to each variable (Figure 1B).

Consider, for instance, a neuron that responds to both written

praise in an email and oral praise.

How does this happen? How do neurons that respond to

reading and listening to praise find their way to mutually synapse

on the same cell? The likely explanation is that many cells have

many inputs, and those associated with environmental informa-

tion that have an eventual impact on our survival, including

acceptance by our social group, will be strengthened, while
Neuron 112, July 17, 2024 3
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less significant ones will be weakened or pruned. Moreover, the

surviving connections are tuned in such a way that the neuron

operates in a linear regime.

Nonlinear mixed selectivity
Neurons that respond to multiple, statistically independent vari-

ables, where the activity tracking these two variables cannot be

expressed as a weighted sum, are considered to be nonlinear

mixed selective neurons (Figure 1B). These neurons can be

modeled as computing a weighted sum of the activity of their

presynaptic neurons and then passing this sum through a nonlin-

earity. The input neurons must encode different variables, and

they can do so in multiple ways: they can be pure selectivity,

nonlinear, or linear mixed selectivity neurons. Moreover, any of

the numerous nonlinear mechanisms that are involved in the

normal functioning of a neuron can contribute to generating

nonlinear mixed selectivity: the frequency-input (f-I) curve of a

neuron is typically nonlinear,47 and that would be sufficient.

However, there are also nonlinearities in the dendritic integra-

tion48–57 and in synaptic transmission.58,59

Rather than abstraction, nonlinear mixed selective neurons

offer the capacity for complexity and depth. Because of their

versatility, these neurons require a wide array of inputs. To

have neurons be readily repurposed in different contexts also

suggest a hierarchical organization. Timescales, locations, prob-

abilities, and internal states are all variables that can contribute

to context. Context-modulation of cue responding is one of the

key applications of this capability. Cues are presented on

discrete timescales, while contexts are represented on a longer

timescale. Different contexts can influence the value or meaning

of cues and, therefore, the same cue should have distinct neural

representations under different contexts, as this would be the

only way to produce outputs that would yield different behaviors.

For example, imagine a mouse encountering an unfamiliar type

of berry in its environment. If the mouse is alone and has never

experienced this particular berry, it might be hesitant to eat it

due to the potential risks of poisoning or illness. However, if

the mouse then encounters a conspecific whose breath carries

the scent of that same berry, it may interpret this as a sign

that the berry is safe to consume. In this context, the smell of

the berry on the breath of a fellow mouse serves as a form of so-

cial verification, indicating that the food is likely safe and worth

the effort to eat. This social cue effectively shifts the mouse’s

evaluation of the unfamiliar berry from potentially risky to likely

safe, all based on the social transmission of food preference60

(Figure 3A).

WHY MIX NONLINEARLY?

Representations based on nonlinear mixed selectivity have

specific computational properties: in particular, they can be

high-dimensional and hence usable by a simple linear readout

like a downstream neuron. These high-dimensional representa-

tions confer enormous flexibility to the neural circuit that reads

them out. To understand them, it is instructive to consider what

is called representational geometry (Figure 2). It is easier to

start from the representations that do not contain mixed selec-

tivity: say, for example, that a visual stimulus can appear in one
4 Neuron 112, July 17, 2024
of two possible contexts. We denote the stimulus by S and the

context by C. Both variables have only two values as there are

only two stimuli and two contexts. Imagine that all the neurons

have pure selectivity to either S or C. For example, we consider

three neurons: the firing rate of the first one, r1, is equal to S

(pure selectivity to the stimulus); the second one, r2, responds

only to context C; and the activity of the third one, r3, depends

on S only, but in a more complicated way, i.e., r3 = 1�S. We

now consider the activity space in which r1, r2, and r3 are rep-

resented along the coordinate axes. In this simple example, we

consider only three neurons, but typically this is a high-dimen-

sional space with many axes. Each point in this space repre-

sents the population response in one experimental condition

(e.g., the first stimulus is presented in the second context).

We will have four points in the activity space as we have two

contexts and two stimuli.

The different types of selectivity yield different geometries. As

the neurons have only pure selectivity, the four points will define

a relatively low-dimensional object: the number of dimensions

will be equal to the number of task-relevant variables. In our

case, the variables are two, and the four points form a rectangle

(Figure 2A). The arrangement of these points defines the geom-

etry of the representation. In the case in which we replace the

third neuron with a linear mixed selectivity neuron (Figure 2B),

the geometry does not change substantially: the flat object that

we saw in the case of pure selectivity neurons will rotate, but it

will not change its dimensionality. The geometry changes signif-

icantly when introducing a nonlinear mixed selectivity neuron

(Figure 2C). Now, the four points define a three-dimensional

(3D) object called a tetrahedron.

Why is the dimensionality of the representation important? To

understand it, we need to take the perspective of a downstream

neuron reading out the representation. What this neuron can or

cannot do depends on how the points of the representation

are arranged. Consider, for example, the situation in which a

readout neuron has to be trained to respond to a particular stim-

ulus always in the same way, ignoring the context in which the

stimulus is presented. We consider this a simple task. This can

be visualized in the activity space by coloring the points accord-

ing to the desired response of the readout neuron (Figure 3B). For

example, we color purple the points corresponding to the condi-

tions where the readout neuron should be active (S = 1) and or-

ange the points for which the readout neuron should be inactive

(S = 0).

Is it possible to connect the readout neuron to the pure selec-

tivity neurons that we discussed in Figure 2A in such a way that it

can solve this simple task? To answer this question, we need to

make further simplifying assumptions. Say that the readout

neuron can perform a simple operation: compute the weighted

sum of the inputs and compare it with an activation threshold

(linear readout). Biological neurons are complex enough to

perform this operation. Graphically, we can visualize this opera-

tion by drawing a plane (Figure 3B) that separates the inputs in

the activity space that activate the readout neuron (the points

above the plane) from the inputs that do not reach the activation

threshold (the points below the plane). For this geometry, it is

possible to draw a plane separating the purple points from the

orange points; in other words, a simple linear readout can



PURE SELECTIVITY LINEAR MIXED SELECTIVITY NONLINEAR MIXED SELECTIVITY
r 3 =

 1
 - 

S

r1 = C
r2 = S

r 4 
= 

1 
- (

S+
C

)/2

r1 = C
r2 = S

r 5 
= 

1 
- S

*C

r1 = C
r2 = S

S=0

S=0

S=1

S=1

C=0

C=1

C=0

C=1

S=0

S=0

S=1

S=1

C=0

C=1

C=0

C=1

S=0

S=0

S=1

S=1

C=0

C=1

C=0

C=1

S=0

S=0

S=1

S=1

C=0

C=1

C=0

C=1

r 1
r 2

r 5

r 3

r 4

S=0

S=0

S=1

S=1

C=0

C=1

C=0

C=1

A B C

Figure 2. Changes in the representational geometry due to linear and nonlinear mixed selectivity
The plots showcase the firing rates of three neurons in response to different combinations of stimuli (S) and contexts (C), both holding two possible values. For
simplicity, two of the firing rates, r1 and r2, are depicted as being purely selective to either the context or the stimuli.
(A) Pure selectivity: here, r3’s activity is inversely related to S (r3 = 1�S). The three-dimensional plot reveals that, in the activity space, the four combinations of S
andC outline a rectangle. Corresponding raster plots below display the firing patterns of these neurons for each S andC combination, revealing distinct activation
based on their selectivity.
(B) Linear mixed selectivity: with r4 responding to a linear combination of the context and stimuli the quadrangle outlined by the four combinations is rotated in this
activity space.
(C) Nonlinear mixed selectivity: with r5 demonstrating nonlinear mixed selectivity, the activity space transforms, with the four points now constituting a
3D tetrahedron.
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perform this task. The same applies to the high-dimensional rep-

resentation that involves a nonlinear mixed selectivity neuron.

But consider now the same geometries when the task is more

complex: the readout has to respond only to stimulus 1 when it

appears in context one and to stimulus 0 when it appears in

context zero, but not in the other two cases. Now, the coloring

of the points is different and, interestingly, it is possible to

separate the purple from the orange points in the case of the

high-dimensional representation, but not in the case of the

low-dimensional one (Figure 3C). This problem is equivalent to

the well-known exclusive-OR (XOR) problem, and no plane can

separate the points of the low-dimensional representation as

required.

In this simple example with only four points, this coloring is the

only one that does not have a linear solution. However, as the

number of points increases, the colorings that require high
dimensionality grow exponentially and become the majority.

So, the more complex the task, the more important nonlinear

mixed selectivity becomes. Note also that when the number of

points increases, the maximal dimensionality increases as well.

If one wants to achieve maximal dimensionality, nonlinear mixed

selectivity is not sufficient, we also need an additional ingredient:

the responses of the neurons have to be diverse enough. This is

possible only when neurons respond to different combinations of

the task-relevant variables. Maximal dimensionality confers a

great flexibility to simple linear readouts, as they can separate

the points in any arbitrary way or perform many different tasks.

However, the maximal dimensionality can only be achieved

when neurons mix nonlinearly and have diverse responses.

Diversity does not necessarily mean ‘‘completely unstruc-

tured.’’ If neuronal responses are characterized by a vector of

regression coefficients, and one plots these vectors as points
Neuron 112, July 17, 2024 5
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(A) Social transmission of food preference is a more
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linear readout to solve this task. However, a down-
stream neuron that receives the activity of r1, r2, and
r5 as input can easily perform a linear readout due to
the higher dimensionality achieved by the nonlinear
selectivity of r5. Created with BioRender.com.
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in a ‘‘selectivity’’ space, we often do not see any structure and

the neurons seem to respond to random combinations of the

task variables.34,37,61–63 However, there are also experiments

in which it is possible to observe some structure in the form of

clustering: there are groups of neurons that tend to respond in

a similar way.64,65

Single-neuron versus population-coding properties
The above classification into pure, linear, or nonlinear mixed

selectivity categories is done at the level of single neurons.

Crucially, this first requires us to decide on a set of relevant

external variables (describing, e.g., stimuli or behaviors) that

we are interested in—for a different choice of this set of variables

the classification of a neuron will differ in general. Let us consider

again the earlier example of a neuron that responds to both writ-

ten and verbal praise. If this neuron’s activity corresponds to the

total amount of praise received, regardless of its mode of

communication, then it could be said to exhibit pure selectivity

for praise in general rather than mixed selectivity for written

and verbal versions of it, even though the latter description is

also valid.

We can establish the selectivity properties of a single neuron

by fitting a linear regression model to predict its firing rate from

the external variables that we have chosen to investigate. If the

fitted coefficient of only one variable is significantly different

from zero, we can describe the neuron as having pure selectivity
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for that variable, whereas multiple non-

zero coefficients would correspond to

linear mixed selectivity. Furthermore, we

can generalize the regression model by

including features that are nonlinear com-

binations (e.g., pairwise products) of the

external variables of interest. If this

extended model can achieve a signifi-
cantly higher (cross-validated) accuracy for predicting the firing

rate of the neuron by assigning non-zero coefficients to these

nonlinear features, the neuron can be said to exhibit nonlinear

mixed selectivity. Such a regression analysis is closely related

to ANOVA.4,34,37,61–63

However, beyond these single-neuron properties, we can also

examine the neural representations that the activity patterns of

these neurons create at the population level, and many of their

properties and computational implications do not depend on

the way we choose the external variables of interest. As dis-

cussed above, one particularly important geometric property of

such a representation is its dimensionality. Pure and linear mixed

selectivity lead to low dimensionality, equal to the number of

relevant variables. Nonlinear mixed selectivity can increase the

dimensionality of the representation beyond this value.

Many computational problems can only be solved by neural

networks with hidden units, i.e., they require nonlinear mixing

of inputs. A network that has learned to correctly execute such

a task will therefore contain at least some neurons that exhibit

nonlinear mixed selectivity with respect to the variables encoded

in the network inputs. However, if the network was trained for

executing a particular task, it may only require very specific

nonlinear mixed selectivity neurons that combine task-relevant

variables in a certain way that supports the chosen task rather

than a variety of different nonlinear mixed selectivity neurons

with a diverse set of coding properties. In other words, even if

http://BioRender.com
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the network performs a complex task that requires nonlinear

mixing, its representations do not necessarily have to be very

high dimensional.

However, representations with (close to) maximal dimension-

ality, which are achieved only when the responses of different

neurons are sufficiently diverse, are an important coding scheme

in situations in which a population of neurons does not have suf-

ficient information about which task it is meant to support

(perhaps because the neurons are not provided with rich and

individually tailored error signals as they would be, e.g., during

learning via backpropagation) or if the animal needs to potentially

execute a large class of different tasks and flexibly switch be-

tween them. In such scenarios, the neural population cannot

shape its representations to specifically subserve a particular

task, but it can nevertheless try to form a neural representation

of the task-relevant variables that is generally useful for

executing many possible tasks. One concrete way to achieve

this is to create a high-dimensional representation that enables

a downstream neuron implementing a linear readout (or linear

classifier) to correctly extract many functions of the input

(perhaps even all possible dichotomies for a moderate number

of binary inputs). In this sense, high dimensionality is associated

with the (cognitive) flexibility of the animal—performing new

tasks is then simply a matter of finding a different readout, which

can be done using a simple perceptron or delta rule, but does not

require changing the internal representations, which would

necessitate more sophisticated learning algorithms.
Expression of mixed selectivity across circuits and
structures
To appreciate what our brains might look like without mixed

selectivity, we can examine which functions and structures at

the micro- and macrocircuit level rely on mixed selectivity. Few

functions are completely devoid of circuit flexibility, and although

the labeled lines circuit motif is the oldest in neuroscience, it is

not the most prevalent.66 Conversely, mixed selectivity was

discovered in the context of higher cognitive functions, allowing

the brain to learn new rules and switch between different rules in

different contexts.1,4,5,67 These computations for complexity can

be seen in cells and circuits down to the olfactory glomeruli68 and

in the auditory69 and somatosensory cortex.70 The fact that

we can learn to like poisons (like caffeine and alcohol) and learn

to hate calorie-rich foods (pistachio ice cream after food

poisoning) suggests that even our sensory systems have flexi-

bility.70,71 There are many circuit motifs that can give rise to flex-

ibility, circuits that diverge depending on gating, that converge to

be integrated, or that compete to orchestrate competing mech-

anisms,66 and the principles of mixed selectivity are foundational

to them all.

Labeled lines circuits have their perks. Signal-to-noise ratio is

maximized, as crosstalk is minimized. The lack of crosstalk

guarantees high fidelity. Moreover, pure selectivity neurons

can have other advantages in terms of energy consumption

and number of needed connections. Although the representa-

tions based on pure and linear mixed selectivity are completely

equivalent from the point of view of a linear readout (they have

the same geometry), when one imposes that the neural activity
can only be positive, the pure selectivity neurons consume less

energy.72

Let us begin by considering sensory association systems

wherein the goal is to produce appropriate reliable responses

to stimuli. Of all types of information, getting reliable sensory in-

formation about our dynamic environment as we navigate it is

paramount. Bipolar cells relaying information from photorecep-

tors to retinal ganglion cells do not require complexity or depth

as much as fidelity—they know what information that photore-

ceptor is providing, which makes decoding trivial.

Initially, our brains filter incoming sensory information, for-

warding for full processing only what is important to send along.

Neurons within the thalamic nuclei handle this initial filtration,

sending massive spikes that increase �500%73 from their basal

activity for the sharpest, most fleeting of signals to be unambig-

uously broadcast to multiple distributed systems. In parallel,

other sensory processing systems through the auditory cortex,

for example, will undergo plasticity based on experience, behav-

ioral state, hormonal signals, etc.71,74–76

The thalamus sends information to many places throughout

the corticolimbic system77—even the basal ganglia,78 including

the basolateral amygdala (BLA) and the PFC.

The BLA is a hub for integrating sensory information and

rapidly converting that into a behavioral response.79 The amyg-

dala is a relatively primitive structure with the capacity for plas-

ticity to form new associations and lies in the middle of the spec-

trum. The amygdala has been demonstrated to have a

substantial amount of hard-wiring79–82 in terms of certain neu-

rons driving specific functions irrespective of state or context,

although there is still some evidence for mixed selectivity for

some variables (see, e.g., O’Neill et al.83). Further support for

the notion of fixed functions existing in the BLA include work

demonstrating the existence of a long-lasting engram ormemory

trace that is stored long term in the same cells in which it was

formed.84–86

Both the BLA and PFC receive sensory information frommany

inputs, including the thalamus, but process it differently.87

‘‘Structured’’ as a divergence point for positive and negative

valence representation, the amygdala has some neurons selec-

tively responding to positive valence and others to nega-

tive,81,82,88–91 though it mixes some other variables.83 The stria-

tum then collates these different signals, weighs them, and

decides on a single motor plan from several rehearsed or innate

motor sequences.92–94

Conversely, the PFC approaches the received information

with precisely the opposite strategy as it has diametrically

distinct functional goals from the sensorimotor chain. Its compu-

tational aim is to weigh choices and delve deeper rather than

produce fixed motor responses. Thus, a different set of tools

are needed. This requires a different cellular and synaptic archi-

tecture that deviates from hardwired functions, opting for

maximal flexibility. This flexibility is achieved by sending diffuse

signals everywhere, each dimension represented by a combina-

tion of decentralized signals, allowing any number of readily

decipherable messages to be selected for readout at any

given time.

Unlike the strong signals sent out by the amygdala, the

PFC communicates with a hum of whispers. Classic plots of
Neuron 112, July 17, 2024 7
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peri-stimulus time rasters or histograms show high baseline

noise with modest signals —but an extraordinarily high number

of variables can be decoded from PFC activity. Importantly,

high dimensionality is not random in the sense that these neu-

rons are always processing different signals; they are reliable

and perform consistently within the same context, showing

different responses in varying contexts. Information is not repre-

sented by individual cells but is more prevalent in the popula-

tion.67 It is routed in different ‘‘subspaces’’ through population

dynamics rather than individual neurons.34,38,95–98

The hippocampus and dentate gyrus utilize a sparse coding

strategy, with most neurons silent at any given moment99,100

and this coding scheme densely packed into layer CA1 still in-

volves neurons with mixed selectivity to position, head direction,

and speed of an animal that freely explores an environment.37

Remapping can be interpreted as another expression of this

coding scheme: hippocampal neurons encode sequences, the

delivery of reward, and the encounter with other animals.63,101

All these variables affect the neural representations and they

can easily result in some form of remapping when mixed

together with position. This is not surprising if one assumes

that the hippocampus is fundamentally a memory system that

compresses the complex sensory representations by taking

advantage of their regularities (see, e.g., Gluck and Myers102

and Benna and Fusi103). The resulting representations are

sparser, more decorrelated, higher dimensional, and involve

mixed selectivity neurons that encode all the different aspects

of sensory experiences that are memorized.

Unlike sparse coding systems like the hippocampus, the PFC

employs amore proliferative coding strategy. For instance, in the

amygdala, approximately 10%–15%of neurons will respond to a

salient stimulus, like a footshock-predicting stimulus, at low

basal firing rates (�1 Hz).84,85,90,104,105 However, in the PFC,

the same predictive cue will be encoded by around 30%–40%

of neurons, albeit with a lower signal-to-noise ratio (basal firing

rates �10 Hz).106–108

These differences in coding strategies in different micro- and

macrocircuits across the brain endow the brain with its versatility

and may help illustrate the functional utility of mixed selectivity

when it is expressed to greater or lesser degrees within the

mammalian brain.

NOT EVERYTHING CAN BE MIXED

We often observe that neural representations supporting a spe-

cific task exhibit themaximal dimensionality enabled by the task4

and, hence, that the task-relevant variables are mixed in all

possible ways. However, the experiments performed in a labora-

tory in a highly controlled environment typically involve a rela-

tively small number of variables, sometimes only one or two.

What happens when the subjects perform a real-world task? In

a simple task, like the one considered in Figure 1 with only two

binary variables, context, and stimulus, the total number of

possible conditions is 4. In general, however, as a function of

the number of binary variables V, the number of task conditions

grows exponentially as 2V. For a complex, real-work task ex-

pressing a sizable number of task-relevant variables V, this num-

ber can therefore be huge, meaning that reaching maximal
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dimensionality would require a correspondingly large number

of mixed selectivity neurons. Because then the maximal dimen-

sionality is bounded by the number of neurons and the number of

conditions,5,109 we might reach the upper limit imposed by the

size of the neural population before all variable combinations

are possibly encoded in mixed selectivity neurons.

Fortunately, the world is highly structured and solving a real-

istic task typically departs from the worst-case scenario that

would require mixing all variables. For example, behavioral con-

texts are often compartmentalized such that we might have to

mix a subset of variables in one task and distinct sets of variables

in different tasks but never have to worry about mixing variables

that are relevant in different tasks. If we can selectively gate the

variables we are interested in, then the number of required neu-

rons would be significantly smaller. In a simple example, where 2

tasks need to be implemented and each only involves a distinct

subset of V/2 variables, we would need 2V/2 + 2V/2 = 2V/2+1 neu-

rons as opposed to 2V. The plot in Figure 4A shows how many

neurons we need when we have to mix only a fraction, F, of

the variables. As the world becomesmore structured (i.e., 1/F in-

creases), the number of needed neurons decreases very rapidly

(note that the scale of the y axis is logarithmic). How can we

implement such a gating mechanism that would allow our popu-

lation to exploit this structure? One simple answer is to choose

properly the connections and the response properties of the

input neurons. Indeed, properly connected nonlinear neurons

can readily implement the most general form of gating and solve

arbitrarily complex problems. However, it is sometimes difficult

to learn these connectivity schemes, and there are other forms

of gating that can complement those based on the careful choice

of the circuit architecture. For example, there are at least two

other mechanisms that implement some form of dynamic gating

(see Figure 4B), selecting which neurons to listen to depending

on the task or the context. There are two implementational motifs

for gating responses or signaling to a given neuron that it should

participate in one ensemble or another: electrical and chemical.

Oscillatory dynamics naturally organize neural activity into func-

tional patterns (Figure 4C). Neuromodulatory signals rely on the

diverse distribution of receptor expression profiles to signal the

appropriate ensemble to amplify depending on cues, contexts,

or internal states (Figure 4D). These two mechanisms likely

work together to dynamically form functional networks.

Oscillatory dynamics flexibly organize mixed selectivity
neurons
Like a stadium crowd doing ‘‘the wave,’’ mixed selectivity neu-

rons can be organized on-the-fly, shifting their participation in

different ensembles and networks for different functions. This or-

ganization has to occur in real-time at a scale large enough to

produce function. One can see such organization in the oscilla-

tions of local field potentials (LFPs).110,111 They reflect coordi-

nated changes in neuronal excitability at the mesoscale,

involving millions of neurons.112 It is at this scale that the brain

focuses attention, makes decisions, executes actions, and re-

trieves memories—processes that necessitate the coordination

of numerous neurons.6,113

There is ample evidence for a role for neural oscillations

in the dynamic organization of functional networks. Top-down
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Figure 4. Strategies to orchestrate gating
(A) The number of neurons that are needed as a function of the number of variables that should be mixed for each task, when the number of tasks 1/F increases
(where F is the fraction of all the variables that have to bemixed per task). The red curve is for a relatively simple task, with 10 binary variables, and the blue curve is
for a more complex task, with 20 variables.
(B) The basic principle of dynamic gating. Here, we have a simple three-layer feedforward neural network that can compute the exclusive-OR function of the input.
With a three-unit hidden layer, the network achieves maximum dimensionality with two inputs and can easily compute the exclusive-OR. With four input neurons,
as we have in this example, we need to either increase the number of hidden units or gate half of the input using a context signal such as is shown here.
(C) Dynamic mixing using oscillations. One way in which this gating can be implemented biologically is through some of the input and downstream neurons
receiving the same oscillatory input. In context 1, when the oscillatory input to the neurons coding for feature 1 and 2 is high, it will be easier for the neurons to
spike, thus making it easier for the downstream neuron to integrate their signals and fire. Similarly, if that oscillatory input is low, it will be harder for these neurons
to spike.
(D) Dynamic gating using neuromodulation. Here, the context signal takes the form of a neuromodulatory signal that makes it easier for neurons with the correct
receptors to become excited, thus facilitating the integration of the firing of neurons 1 and 2 by the downstream neuron in the bottom picture.
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information is reflected in patterns of LFP coherence.114–117

Changes in oscillatory dynamics track changes in attentional

focus and state.118–125 Oscillations help route information

and form network assemblies in the hippocampus and cor-

tex.126–129 Further, LFPs serve as reliable sources of informa-

tion, unaffected by neuronal representation drift.130 Further, os-

cillations form traveling waves131–133 that can have precise

influences on networks and impact function.134–138 The theory

of spatial computing ties this together to explain how the brain

applies rhythms to physical patches of the cortex to selectively

control just the right neurons at the right times to do the right

things.139
Importantly, the fluctuating electric fields not only reflect orga-

nization but can also create organization by having a causal influ-

ence. There are numerous instances of ephaptic coupling (i.e., the

causal influence of electric fields) in the brain.140–148When cortical

neurons are not spiking (which is much of the time) their mem-

brane potentials are oscillating below the spiking threshold. This

reflects and contributes to the surrounding electric fields. Thus,

cortical neurons spend much of their time ‘‘teetering’’ on the

edge of spiking in a sea of fluctuating electric fields. Even small

changes in the fields can ‘‘push’’ them one way or another. Elec-

tric fields are an ideal ‘‘orchestra conductor’’ for coordinating neu-

ral activity. They spread influences at the speed of light. It would
Neuron 112, July 17, 2024 9
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be remarkable if evolution did not take advantage of this phenom-

enon to use it for organizing neural activity.

Oscillations likely interact with neuromodulation. Neurons cor-

elease fast neurotransmitters as well as neuromodulators, which

are packaged into either vesicles or dense core vesicles.149,150

Neuromodulation affects excitability. Plus, certain oscillatory fre-

quencies can cause preferential release of dense core vesicles

containing neuromodulatory signals. This offers another layer

of control.

Neuromodulatory signals tune ensemble volume,
orchestrating mixed selectivity
Another organizational push may come from neuromodulation,

which can have effects in hundreds of milliseconds and last for

hours.151 Neuromodulation can trigger the transition between

behavioral states,152 often by activating a neuromodulatory or

neuropeptidergic nucleus that can modulate the release of a

neuromodulator. These neuromodulators have broad but unique

innervation patterns across the brain. Their signals will be read

out through axonal innervation patterns and downstream recep-

tor expression profiles. The receptor expression profiles are pre-

dominantly predetermined but subject to experience-dependent

plasticity. They can act as a weighted filter, allowing different

neuromodulators to generate varied brain states. From ghrelin

inducing hunger to oxytocin-stimulating prosocial behavior, neu-

romodulatory systems offer a wide spectrum of programs.153,154

There are different uses for neuromodulation and they can

have specific effects. In the BLA, at baseline conditions, there

is a bias toward prioritizing negative valence—which is adaptive

given that predation is a more immediate threat to survival than

not obtaining food or water. The relative bias can be altered or

even flipped by changes in internal or external conditions.

Food restriction can shift the balance between positive

and negative valence processing circuits in the BLA,155 which

may facilitate the prioritization of food-seeking via changes in

hormonal, peptidergic, or modulatory signals. Additionally,

increasing the concentration of neurotensin in the BLA gates

reward learning, effectively shifting the bias toward reward

learning.91

Multivariate and specific effects of neuromodulation are

evident in the PFC, where mixed selectivity is expressed by

most neurons. Dopamine can serve as the ‘‘switch operator’’

for directing information flow.6,66,156 In the mPFC, increasing

dopaminergic tone amplifies the signal-to-noise ratio for infor-

mation about aversive, but not appetitive, stimuli in a specific

projection to a brainstem region, the periaqueductal gray

(PAG).108 Importantly, dopamine concentration does not act uni-

formly on different PFC neurons; mPFC neurons projecting to the

nucleus accumbens (Nac) showed a suppression of activity,

while mPFC-PAG neurons showed a selective amplification of

information about punishments, such as air puff or foot shock,

but not rewards such as sucrose.108

Importantly, dendritic nonlinearities are a key subcellular

component that provide a possible mechanistic explanation for

how mixed selectivity can be implemented in the context of neu-

romodulation. Various neuromodulatory receptors may be ex-

pressed and multiplexed on a single cell, allowing a given cell

to be recruited (or suppressed and effectively excluded) from a
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given ensemble. Neuronal dendrites offer a high level of electrical

compartmentalization onto which different functional classes of

receptors (ranging from excitatory or inhibitory to different neu-

romodulatory receptors) may be segregated into different com-

partments,50,54 allowing the cell to receive and transmit informa-

tion differently in the presence of different concentrations of

neuromodulators—such as dopamine, serotonin, and norepi-

nephrine—as demonstrated in acetylcholine.55 For example, a

single cell may have a proximal dendritic compartment receiving

bottom-up sensory input and a distal dendritic compartment

receiving top-down, predictive coding inputs, and allow a cell

to integrate both of these signals.

Finally, the chemical signal of neuromodulation binds to

GPCRs, initiating second-messenger cascades that can

contribute to shifting cells into different membrane states, thus

altering the electrical signals. By biasing resting membrane po-

tentials, and using different receptors to induce different

changes to the cell, neuromodulators can shift the synchrony

and the oscillatory patterns of the brain.
CONCLUDING REMARKS

When the first description of mixed selectivity was articulated

over a decade ago, the initial focus was on the population dy-

namics of the PFC and a high-level cognitive function, working

memory. Now, we know that mixed selectivity is not a rare

feature of neurons of certain brain areas, organisms, and func-

tions. Rather, mixed selectivity is ubiquitous.4,157,158 It is present

across species and across functions from high-level cognition to

‘‘automatic’’ sensorimotor processes such as object recogni-

tion159 and even to homeostatic processes.160 The widespread

presence of mixed selectivity underscores its fundamental role

in providing the brain with the scalable processing power

needed for complex thought and action.4
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56. Takahashi, N., Ebner, C., Sigl-Glöckner, J., Moberg, S., Nierwetberg, S.,
and Larkum, M.E. (2020). Active dendritic currents gate descending
cortical outputs in perception. Nat. Neurosci. 23, 1277–1285. https://
doi.org/10.1038/s41593-020-0677-8.

57. Aru, J., Suzuki, M., and Larkum, M.E. (2020). Cellular Mechanisms of
Conscious Processing. Trends Cogn. Sci. 24, 814–825. https://doi.org/
10.1016/j.tics.2020.07.006.

58. Tsodyks, M.V., and Markram, H. (1997). The neural code between
neocortical pyramidal neurons depends on neurotransmitter release
probability. Proc. Natl. Acad. Sci. USA 94, 719–723. https://doi.org/10.
1073/pnas.94.2.719.

59. Brunel, N., and Wang, X.-J. (2001). Effects of Neuromodulation in a
Cortical Network Model of Object Working Memory Dominated by
Recurrent Inhibition. J. Comput. Neurosci. 11, 63–85. https://doi.org/
10.1023/A:1011204814320.

60. Wrenn, C.C. (2004). Social Transmission of Food Preference in Mice.
Curr. Protoc. Neurosci. 28, 8–15. https://doi.org/10.1002/0471142301.
ns0805gs28.

61. Raposo, D., Kaufman, M.T., and Churchland, A.K. (2014). A category-
free neural population supports evolving demands during decision-mak-
ing. Nat. Neurosci. 17, 1784–1792. https://doi.org/10.1038/nn.3865.

62. Kaufman, M.T., Benna, M.K., Rigotti, M., Stefanini, F., Fusi, S., and
Churchland, A.K. (2022). The implications of categorical and category-
free mixed selectivity on representational geometries. Curr. Opin. Neuro-
biol. 77, 102644. https://doi.org/10.1016/j.conb.2022.102644.

63. Boyle, L.M., Posani, L., Irfan, S., Siegelbaum, S.A., and Fusi, S. (2024).
Tuned geometries of hippocampal representations meet the demands
of social memory. Neuron. 112, 1358–1371.

64. Hirokawa, J., Vaughan, A., Masset, P., Ott, T., and Kepecs, A. (2019).
Frontal cortex neuron types categorically encode single decision
variables. Nature 576, 446–451. https://doi.org/10.1038/s41586-019-
1816-9.

65. Hocker, D.L., Brody, C.D., Savin, C., and Constantinople, C.M. (2021).
Subpopulations of neurons in lOFC encode previous and current rewards
at time of choice. eLife 10, e70129. https://doi.org/10.7554/eLife.70129.

66. Tye, K.M. (2018). Neural Circuit Motifs in Valence Processing. Neuron
100, 436–452. https://doi.org/10.1016/j.neuron.2018.10.001.

67. Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (2013).
Context-dependent computation by recurrent dynamics in prefrontal
cortex. Nature 503, 78–84. https://doi.org/10.1038/nature12742.

68. Caron, S.J.C., Ruta, V., Abbott, L.F., and Axel, R. (2013). Random
convergence of olfactory inputs in the Drosophila mushroom body. Na-
ture 497, 113–117. https://doi.org/10.1038/nature12063.

69. Downer, J.D., Verhein, J.R., Rapone, B.C., O’Connor, K.N., and Sutter,
M.L. (2021). An Emergent Population Code in Primary Auditory Cortex
Supports Selective Attention to Spectral and Temporal Sound Features.
J. Neurosci. 41, 7561–7577. https://doi.org/10.1523/JNEUROSCI.0693-
20.2021.

70. Nogueira, R., Rodgers, C.C., Bruno, R.M., and Fusi, S. (2023). The geom-
etry of cortical representations of touch in rodents. Nat. Neurosci. 26,
239–250. https://doi.org/10.1038/s41593-022-01237-9.

71. Marlin, B.J., Mitre, M., D’amour, J.A., Chao, M.V., and Froemke, R.C.
(2015). Oxytocin enablesmaternal behaviour by balancing cortical inhibi-
tion. Nature 520, 499–504. https://doi.org/10.1038/nature14402.

72. Whittington, J.C.R., Dorrell, W., Ganguli, S., and Behrens, T. (2022).
Disentanglement with Biological Constraints: A Theory of Functional
Cell Types. In Proceedings of The Eleventh International Conference on
Learning Representations.

73. Leppla, C.A., Keyes, L.R., Glober, G., Matthews, G.A., Batra, K., Jay, M.,
Feng, Y., Chen, H.S., Mills, F., Delahanty, J., et al. (2023). Thalamus
sends information about arousal but not valence to the amygdala. Psy-
chopharmacol. (Berl.) 240, 477–499. https://doi.org/10.1007/s00213-
022-06284-5.

https://doi.org/10.1016/j.celrep.2021.109175
https://doi.org/10.1016/j.celrep.2021.109175
https://doi.org/10.7554/eLife.58782
https://doi.org/10.1523/JNEUROSCI.1771-21.2022
https://doi.org/10.1523/JNEUROSCI.1771-21.2022
https://doi.org/10.1126/science.abm9922
https://doi.org/10.1016/j.cub.2021.10.034
https://doi.org/10.1016/j.cub.2021.10.034
https://doi.org/10.1038/nn.3643
https://doi.org/10.1016/j.cell.2017.05.011
https://doi.org/10.1016/j.cell.2017.05.011
https://doi.org/10.1038/s41467-021-26751-5
https://doi.org/10.1111/j.1749-6632.2003.tb07096.x
https://doi.org/10.1038/18686
https://doi.org/10.1038/nature07663
https://doi.org/10.1038/nature07663
https://doi.org/10.1038/nature11601
https://doi.org/10.1038/nn.3077
https://doi.org/10.1038/nn.4062
https://doi.org/10.1016/j.neuron.2015.05.006
https://doi.org/10.1038/s41593-018-0254-6
https://doi.org/10.1038/s41593-018-0254-6
https://doi.org/10.1016/j.neuron.2018.11.035
https://doi.org/10.1038/s41593-020-0677-8
https://doi.org/10.1038/s41593-020-0677-8
https://doi.org/10.1016/j.tics.2020.07.006
https://doi.org/10.1016/j.tics.2020.07.006
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1023/A:1011204814320
https://doi.org/10.1023/A:1011204814320
https://doi.org/10.1002/0471142301.ns0805gs28
https://doi.org/10.1002/0471142301.ns0805gs28
https://doi.org/10.1038/nn.3865
https://doi.org/10.1016/j.conb.2022.102644
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref60
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref60
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref60
https://doi.org/10.1038/s41586-019-1816-9
https://doi.org/10.1038/s41586-019-1816-9
https://doi.org/10.7554/eLife.70129
https://doi.org/10.1016/j.neuron.2018.10.001
https://doi.org/10.1038/nature12742
https://doi.org/10.1038/nature12063
https://doi.org/10.1523/JNEUROSCI.0693-20.2021
https://doi.org/10.1523/JNEUROSCI.0693-20.2021
https://doi.org/10.1038/s41593-022-01237-9
https://doi.org/10.1038/nature14402
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref69
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref69
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref69
http://refhub.elsevier.com/S0896-6273(24)00278-2/sref69
https://doi.org/10.1007/s00213-022-06284-5
https://doi.org/10.1007/s00213-022-06284-5


ll
OPEN ACCESSPerspective

Please cite this article in press as: Tye et al., Mixed selectivity: Cellular computations for complexity, Neuron (2024), https://doi.org/10.1016/
j.neuron.2024.04.017
74. Schafe, G.E., and LeDoux, J.E. (2000). Memory Consolidation of Auditory
Pavlovian Fear Conditioning Requires Protein Synthesis and Protein Ki-
nase A in the Amygdala. J. Neurosci. 20, RC96. https://doi.org/10.
1523/JNEUROSCI.20-18-j0003.2000.

75. Tootoonian, S., Coen, P., Kawai, R., and Murthy, M. (2012). Neural Rep-
resentations of Courtship Song in the Drosophila Brain. J. Neurosci. 32,
787–798. https://doi.org/10.1523/JNEUROSCI.5104-11.2012.

76. Hindmarsh Sten, T., Li, R., Otopalik, A., and Ruta, V. (2021). Sexual
arousal gates visual processing during Drosophila courtship. Nature
595, 549–553. https://doi.org/10.1038/s41586-021-03714-w.

77. O’Muircheartaigh, J., Keller, S.S., Barker, G.J., and Richardson, M.P.
(2015). White Matter Connectivity of the Thalamus Delineates the Func-
tional Architecture of Competing Thalamocortical Systems. Cereb. Cor-
tex 25, 4477–4489. https://doi.org/10.1093/cercor/bhv063.

78. Barsy, B., Kocsis, K., Magyar, A., Babiczky, Á., Szabó, M., Veres, J.M.,
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140. Fröhlich, F., and McCormick, D.A. (2010). Endogenous Electric Fields
May Guide Neocortical Network Activity. Neuron 67, 129–143. https://
doi.org/10.1016/j.neuron.2010.06.005.

141. Anastassiou, C.A., Perin, R., Markram, H., and Koch, C. (2011). Ephaptic
coupling of cortical neurons. Nat. Neurosci. 14, 217–223. https://doi.org/
10.1038/nn.2727.

142. Anastassiou, C.A., and Koch, C. (2015). Ephaptic coupling to endoge-
nous electric field activity: why bother? Curr. Opin. Neurobiol. 31,
95–103. https://doi.org/10.1016/j.conb.2014.09.002.

143. Faber, D.S., and Pereda, A.E. (2018). Two Forms of Electrical Transmis-
sion Between Neurons. Front. Mol. Neurosci. 11, 427. https://doi.org/10.
3389/fnmol.2018.00427.

144. Schmidt, H., Hahn, G., Deco, G., and Knösche, T.R. (2021). Ephaptic
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